Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T18:22:09.766Z Has data issue: false hasContentIssue false

Ultrahigh-temperature metamorphism and decompression history of sapphirine granulites from Rajapalaiyam, southern India: implications for the formation of hot orogens during Gondwana assembly

Published online by Cambridge University Press:  15 July 2009

T. TSUNOGAE*
Affiliation:
Graduate School of Life and Environmental Sciences (Earth Evolution Sciences), University of Tsukuba, Ibaraki 305–8572, Japan Department of Geology, University of Johannesburg, Auckland Park 2006, Republic of South Africa
M. SANTOSH
Affiliation:
Faculty of Science, Kochi University, Kochi 780–8520, Japan
*
§Author for correspondence: tsunogae@geol.tsukuba.ac.jp

Abstract

Sapphirine-bearing Mg–Al granulites from Rajapalaiyam in the southern part of the Madurai Block provide critical evidence for Late Neoproterozoic–Cambrian ultrahigh-temperature (UHT) metamorphism in southern India. Poikiloblastic garnet in quartzo-feldspathic and pelitic granulites contain inclusions of fine-grained subidioblastic to xenoblastic sapphirine associated with quartz, suggesting that the rocks underwent T > 1000°C peak metamorphism. Quartz inclusions in spinel within garnet are also regarded as clear evidence for a UHT condition. Inclusions of orthopyroxene within porphyroblastic garnet in the sapphirine-bearing rocks show the highest Al2O3 content of up to 10.3 wt%, suggesting T = 1050–1070°C and P = 8.5–9.5 kbar. Temperatures estimated from ternary feldspar and other geothermometers (T = 950–1000°C) further support extreme thermal metamorphism in this region. Xenoblastic spinel inclusions in sapphirine coexisting with quartz suggest that the spinel + quartz assemblage pre-dates the sapphirine + quartz assemblage, probably implying a cooling from T ~ 1050°C or an anticlockwise P–T path. The FMAS reaction sapphirine + quartz + garnet → orthopyroxene + sillimanite indicates a cooling from the sapphirine + quartz stability field after the peak metamorphism. Corona textures of orthopyroxene + cordierite (± sapphirine), orthopyroxene + sapphirine + cordierite, and cordierite + spinel around garnet suggest subsequent near-isothermal decompression followed by decompressional cooling toward T = 650–750°C and P = 4.5–5.5 kbar. The sapphirine–quartz association and related textures described in this study have an important bearing on the UHT metamorphism and exhumation history of the Madurai Block, as well as on the tectonic evolution of the continental deep crust in southern India. Our study provides a typical example for extreme metamorphism associated with collisional tectonics during the Late Neoproterozoic–Cambrian assembly of the Gondwana supercontinent.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aranovich, L. Y. & Berman, R. G. 1997. A new garnet–orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene. American Mineralogist 82, 345–53.CrossRefGoogle Scholar
Baldwin, J. A., Powell, R., Brown, M., Moraes, R. & Fuck, R. A. 2005. Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis–Itauçu Complex, central Brazil. Journal of Metamorphic Geology 23, 511–31.CrossRefGoogle Scholar
Bégin, N. J. & Pattison, D. R. M. 1994. Metamorphic evolution of granulites in the Minto block, northern Québec: extraction of peak P–T conditions taking account of late Fe–Mg exchange. Journal of Metamorphic Geology 12, 411–28.CrossRefGoogle Scholar
Bertrand, P., Ellis, D. J. & Green, D. H. 1991. The stability of sapphirine–quartz and hypersthene–sillimanite–quartz assemblages: an experimental investigation in the system FeO–MgO–Al2O3–SiO2 under H2O and CO2 conditions. Contributions to Mineralogy and Petrology 108, 5571.CrossRefGoogle Scholar
Bose, S. & Das, K. 2007. Sapphirine + quartz assemblage in contrasting textural modes from the Eastern Ghats belt, India: implications for stability relations in UHT metamorphism and retrograde processes. Gondwana Research 11, 492503.CrossRefGoogle Scholar
Braun, I., Montel, J. M. & Nicollet, C. 1998. Electron microprobe dating monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chemical Geology 146, 6585.CrossRefGoogle Scholar
Braun, I., Cenki-Tok, B., Paquette, J.-L. & Tiepolo, M. 2007. Petrology and U–Th–Pb geochronology of the sapphirine-quartz-bearing metapelites from Rajapalayam, Madurai Block, Southern India: evidence for polyphase Neoproterozoic high-grade metamorphism. Chemical Geology 241, 129–47.CrossRefGoogle Scholar
Brown, M. 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49, 193234.CrossRefGoogle Scholar
Brown, M. & Raith, M. 1996. First evidence of ultrahigh-temperature decompression from the granulite province of southern India. Journal of the Geological Society, London 153, 819–22.CrossRefGoogle Scholar
Buddington, A. F. & Lindsley, D. H. 1964. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology 5, 310–57.CrossRefGoogle Scholar
Carrington, D. P. & Harley, S. L. 1995. Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system. Contributions to Mineralogy and Petrology 120, 270–91.CrossRefGoogle Scholar
Collins, A. S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D. E. & Hand, M. 2007. Passage Through India: The Mozambique Ocean Suture, High Pressure Granulites and the Palghat-Cauvery Shear System. Terra Nova 19, 141–7.CrossRefGoogle Scholar
Drury, S. A., Harris, N. B. W., Holt, R. W., Reeves-Smith, G. J. & Wightman, R. T. 1984. Precambrian tectonics and crustal evolution in south India. Journal of Geology 92, 320.CrossRefGoogle Scholar
Fitzsimons, I. C. W. & Harley, S. L. 1994. The influence of retrograde cation exchange on granulite P–T estimates and a convergence technique for the recovery of peak metamorphic conditions. Journal of Petrology 35, 543–76.CrossRefGoogle Scholar
Fuhrman, M. L. & Lindsley, D. H. 1988. Ternary-feldspar modeling and thermometry. American Mineralogist 73, 201–15.Google Scholar
GSI (Geological Survey of India). 1995. Geological and mineral map of Tamil Nadu and Pondicherry, 1:500,000.Google Scholar
Grew, E. S., Hiroi, Y. & Shiraishi, K. 1990. Högbomite from the Prince Olav Coast, East Antarctica: An example of oxidation-exsolution of a complex magnetite solid solution? American Mineralogist 75, 589600.Google Scholar
Harley, S. L. 1989. The origin of granulites: a metamorphic perspective. Geological Magazine 126, 215–47.CrossRefGoogle Scholar
Harley, S. L. 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In What Drives Metamorphism and Metamorphic Reactions? (eds Treloar, P. J. & O'Brian, P. J.), pp. 81107. Geological Society of London, Special Publication no. 138.Google Scholar
Harley, S. L. 2004. Extending our understanding of ultrahigh-temperature crustal metamorphism. Journal of Mineralogical and Petrological Sciences 99, 140–58.CrossRefGoogle Scholar
Harley, S. L. 2008. Refining the P–T records of UHT crustal metamorphism. Journal of Metamorphic Geology 26, 125–54.CrossRefGoogle Scholar
Harley, S. L., Hensen, B. J. & Sheraton, J. W. 1990. Two-stage decompression in orthopyroxene–sillimanite granulites from Forefinger Point, Enderby Land, Antarctica: implications for the evolution of the Archaean Napier Complex. Journal of Metamorphic Geology 8, 591613.CrossRefGoogle Scholar
Hensen, B. J. & Green, D. H. 1973. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III. Synthesis of experimental data and geological applications. Contributions to Mineralogy and Petrology 38, 151–66.CrossRefGoogle Scholar
Hensen, B. J. & Harley, S. L. 1990. Graphical analysis of P–T–X relations in granulite facies metapelites. In High-temperature metamorphism and crustal anatexis (eds Ashworth, J. R. & Brown, M., M), pp. 1956. London: Kluwer Academic Publishers.CrossRefGoogle Scholar
Hokada, T. 2001. Feldspar thermometry in ultrahigh-temperature metamorphic rocks: Evidence of crustal metamorphism attaining ~1100°C in the Archean Napier Complex, East Antarctica. American Mineralogist 86, 932–8.CrossRefGoogle Scholar
Hollis, J. & Harley, S. L. 2003 . Alumina solubility in orthopyroxene coexisting with sapphirine and quartz. Contributions to Mineralogy and Petrology 144, 473–83.CrossRefGoogle Scholar
Ishii, S., Tsunogae, T. & Santosh, M. 2006. Ultrahigh-temperature metamorphism in the Achankovil Zone: implications for the correlation of crustal blocks in southern India. Gondwana Research 10, 99114.CrossRefGoogle Scholar
Kanazawa, T., Tsunogae, T., Sato, K. & Santosh, M. 2009. The stability and origin of sodicgedrite in ultrahigh-temperature granulites: a case study from the Gondwana suture in southern India. Contributions to Mineralogy and Petrology 157, 95110.CrossRefGoogle Scholar
Kelsey, D. E. 2008. On ultrahigh-temperature crustal metamorphism. Gondwana Research 13, 129.CrossRefGoogle Scholar
Kelsey, D. E., White, R. W., Holland, T. J. B. & Powell, R. 2004. Calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O for sapphirine-quartz-bearing mineral assemblages. Journal of Metamorphic Geology 22, 559–78.CrossRefGoogle Scholar
Koshimoto, S., Santosh, M. & Tsunogae, T. 2004. Sapphirine-corundum-spinel bearing ultrahigh-temperature rocks within Palghat-Cauvery Shear System, Southern India. Gondwana Research 7, 1333–4.Google Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Lee, H. Y. & Ganguly, J. 1988. Equilibrium compositions of coexisting garnet and orthopyroxene: experimental determinations in the system FeO–MgO–Al2O3–SiO2, and applications. Journal of Petrology 29, 93113.CrossRefGoogle Scholar
Leite, C. M. M. de, Barbosa, J. S. F., Goncalves, P., Nicollet, C. & Sabaté, P. 2009. Petrological evolution of silica-undersaturated sapphirine-bearing granulite in the Paleoproterozoic Salvador-Curaçá Belt, Bahia, Brazil. Gondwana Research 15, 4970.CrossRefGoogle Scholar
Moecher, D. P., Essene, E. J. & Anovitz, L. M. 1988. Calculation and application of clinopyroxene–garnet–plagioclase–quartz geobarometers. Contributions to Mineralogy and Petrology 100, 92106.CrossRefGoogle Scholar
Mohan, A., Ackermand, D. & Lal, R. K. 1986. Reaction textures and P–T–X trajectory in the sapphirine-spinel-bearing granulites from Ganguvarpatti, southern India. Neues Jahrbuch für Mineralogische Abhandlungen 154, 119.Google Scholar
Mohan, A. & Windley, B. F. 1993. Crustal trajectory of sapphirine-bearing granulites from Ganguvarpatti, South India: evidence for an isothermal decompression path. Journal of Metamorphic Geology 11, 867–78.CrossRefGoogle Scholar
Motoyoshi, Y. & Ishikawa, M. 1997. Metamorphic and structural evolution of granulites from Rundvagshetta, Lützow-Holm Bay, East Antarctica. In The Antarctic Region: Geological evolution and processes (ed. Ricci, C. A.), pp. 6572. Terra Antarctic Publications.Google Scholar
Nichols, G. T., Berry, R. F. & Green, D. H. 1992. Internally consistent gahnitic spinel–cordierite–garnet equilibria in the FMASHZn system: geothermobarometry and applications. Contributions to Mineralogy and Petrology 111, 362–77.CrossRefGoogle Scholar
Ohyama, H., Tsunogae, T. & Santosh, M. 2008. CO2-rich fluid inclusions in staurolite and associated minerals in a high-pressure ultrahigh-temperature granulite from the Gondwana suture in southern India. Lithos 101, 177–90.CrossRefGoogle Scholar
Ouzegane, K. & Boumaza, S. 1996. An example of ultrahigh-temperature metamorphism: orthopyroxene–sillimanite–garnet, sapphirine-quartz and spinel-quartz parageneses in Al–Mg granulites from In Hihaou, In Ouzzal, Hoggar. Journal of Metamorphic Geology 14, 693708.CrossRefGoogle Scholar
Perchuk, L. L. & Lavrent'eva, I. V. 1983. Experimental investigation of exchange equilibria in the system cordierite–garnet–biotite. In Kinetics and equilibrium in mineral reactions (ed. Saxena, S. K.), pp. 199239. Berlin-Heidelberg-New York: Springer-Verlag.CrossRefGoogle Scholar
Perkins, D. & Chipera, S. J. 1985. Garnet–orthopyroxene–plagioclase–quartz barometry: refinement and application to the English River subprovince and the Minnesota River valley. Contributions to Mineralogy and Petrology 89, 6980.CrossRefGoogle Scholar
Prakash, D. & Arima, M. 2003. High-temperature dehydration melting and decompressive textures in Mg–Al granulites from the Palni hills, South India. Polar Geoscience 16, 149–75.Google Scholar
Raith, M., Karmakar, S. & Brown, M. 1997. Ultra-high-temperature metamorphism and multistage decompressional evolution of sapphirine granulites from the Palni hill ranges, Southern India. Journal of Metamorphic Geology 15, 379–99.CrossRefGoogle Scholar
Sajeev, K. & Osanai, Y. 2004. Ultrahigh-temperature Metamorphism (1150°C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka. Journal of Petrology 45, 1821–44.CrossRefGoogle Scholar
Sajeev, K., Osanai, Y. & Santosh, M. 2004. Ultrahigh-temperature metamorphism followed by two-stage decompression of garnet–orthopyroxene–sillimanite granulites from Ganguvarpatti, Madurai block, southern India. Contributions to Mineralogy and Petrology 148, 2946.CrossRefGoogle Scholar
Santosh, M. 1987. Cordierite gneisses of southern Kerala, India: petrology, fluid inclusions and implications for crustal uplift history. Contributions to Mineralogy and Petrology 96, 343–56.CrossRefGoogle Scholar
Santosh, M., Collins, A. S., Tamashiro, I., Koshimoto, S., Tsutsumi, Y. & Yokoyama, K. 2006. The timing of ultrahigh-temperature metamorphism in Southern India: U–Th–Pb electron microprobe ages from zircon and monazite in sapphirine-bearing granulites. Gondwana Research 10, 128–55.CrossRefGoogle Scholar
Santosh, M., Maruyama, S., Komiya, T. & Yamamoto, S. 2009 a. Orogens in the evolving Earth: from surface continents to “lost continents” on the core-mantle boundary. In The Evolving Continents: Understanding Processes of Continental Growth (eds Kusky, T. M., Zhai, M. G. & Xiao, W. J.), in press. Geological Society of London Special Publication.Google Scholar
Santosh, M., Maruyama, S. & Sato, K. 2009. Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Research, doi: 10.1016/j.gr.2008.12.012, in press.CrossRefGoogle Scholar
Santosh, M., Morimoto, T. & Tsutsumi, Y. 2006. Geochronology of the khondalite belt of Trivandrum Block, southern India: electron probe ages and implications for Gondwana tectonics. Gondwana Research 9, 261–78.CrossRefGoogle Scholar
Santosh, M. & Omori, S. 2008 a. CO2 flushing: A plate tectonic perspective. Gondwana Research 13, 86102.CrossRefGoogle Scholar
Santosh, M. & Omori, S. 2008 b. CO2 windows from mantle to atmosphere: Models on ultrahigh-temperature metamorphism and speculations on the link with melting of snowball Earth. Gondwana Research 14, 8296.CrossRefGoogle Scholar
Santosh, M. & Sajeev, K. 2006. Anticlockwise evolution of ultrahigh-temperature granulites within continental collision zone in southern India. Lithos 92, 447–64.CrossRefGoogle Scholar
Santosh, M., Sajeev, K. & Li, J. H. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: evidence from the North China Craton. Gondwana Research 10, 256–66.CrossRefGoogle Scholar
Santosh, M., Sajeev, K., Li, J. H., Liu, S. J. & Itaya, T. 2009 b. Counterclockwise exhumation of a hot orogen: The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos 110, 140–52.CrossRefGoogle Scholar
Santosh, M., Tsunogae, T., Li, J. H. & Liu, S. J. 2007. Discovery of sapphirine-bearing Mg–Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research 11, 263–85.CrossRefGoogle Scholar
Santosh, M., Tsunogae, T., Ohyama, H., Sato, K., Li, J. H. & Liu, S. J. 2008. Carbonic metamorphism at ultrahigh-temperatures: Evidence from North China Craton. Earth and Planetary Science Letters 266, 149–65.CrossRefGoogle Scholar
Santosh, M., Yokoyama, S., Biju-Sekhar, S. & Rogers, J. J. W. 2003. Multiple tectonothermal events in the granulite blocks of Southern India revealed from EPMA dating: implications on the history of supercontinents. Gondwana Research 6, 2963.CrossRefGoogle Scholar
Satish-Kumar, M. 2000. Ultrahigh-temperature metamorphism in Madurai granulites, Southern India: Evidence from carbon isotope thermometry. Journal of Geology 108, 479–86.CrossRefGoogle ScholarPubMed
Shimizu, H., Tsunogae, T. & Santosh, M. 2009. Spinel + quartz assemblage in granulites from the Achankovil Shear Zone, southern India: implications for ultrahigh-temperature metamorphism. Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2009.06.005, in press.CrossRefGoogle Scholar
Shimpo, M., Tsunogae, T. & Santosh, M. 2006. First report of garnet-corundum rocks from Southern India: implications for prograde high-pressure (eclogite-facies?) metamorphism. Earth and Planetary Science Letters 242, 111–29.CrossRefGoogle Scholar
Sinha-Roy, S., Mathai, J. & Narayanaswamy, . 1984. Structure and metamorphic characteristics of cordierite-bearing gneiss of south Kerala. Journal of the Geological Society of India 25, 231–44.Google Scholar
Sriramguru, K., Janardhan, A. S., Basava, S. & Basavalingu, B. 2002. Prismatine and sapphirine bearing assemblages from Rajapalaiyam area, Tamil Nadu: origin and metamorphic history. Journal of the Geological Society of India 59, 103–12.Google Scholar
Tadokoro, H., Tsunogae, T., Santosh, M. & Yoshimura, Y. 2007. First report of the spinel + quartz assemblage from Kodaikanal in the Madurai Block, southern India: implications for ultrahigh-temperature metamorphism. International Geology Review 49, 1050–68.CrossRefGoogle Scholar
Tamashiro, I., Santosh, M., Sajeev, K., Morimoto, T. & Tsunogae, T. 2004. Multistage orthopyroxene formation in ultrahigh-temperature granulites of Ganguvarpatti, southern India: implications for complex metamorphic evolution during Gondwana assembly. Journal of Mineralogical and Petrological Sciences 99, 279–97.CrossRefGoogle Scholar
Tateishi, K., Tsunogae, T., Santosh, M. & Janardhan, A. S. 2004. First report of sapphirine + quartz assemblage from southern India: implications for ultrahigh-temperature metamorphism. Gondwana Research 7, 899912.CrossRefGoogle Scholar
Tsunogae, T. & Santosh, M. 2003. Sapphirine and corundum-bearing granulites from Karur, Madurai Block, Southern India. Gondwana Research 6, 925–30.CrossRefGoogle Scholar
Tsunogae, T. & Santosh, M. 2006. Spinel-sapphirine-quartz bearing composite inclusion within garnet from an ultrahigh-temperature pelitic granulite: implications for metamorphic history and P–T path. Lithos 92, 524–36.CrossRefGoogle Scholar
Tsunogae, T. & Santosh, M. 2007. Ultrahigh-temperature metamorphism in southern Indian granulite terrane. IAGR Memoir 10, 121.Google Scholar
Tsunogae, T., Santosh, M., Osanai, Y., Owada, M., Toyoshima, T. & Hokada, T. 2002. Very high-density carbonic fluid inclusions in sapphirine-bearing granulites from Tonagh Island in the Archean Napier Complex, East Antarctica: implications for CO2 infiltration during ultrahigh-temperature (T > 1100°C) metamorphism. Contributions to Mineralogy and Petrology 143, 279–99.CrossRefGoogle Scholar
Tsunogae, T., Santosh, M. & Dubessy, J. 2008. Fluid characteristics of high- to ultrahigh-temperature metamorphism in southern India: a quantitative Raman spectroscopic study. Precambrian Research 162, 198211.Google Scholar
Tsunogae, T., Santosh, M., Dubessy, J., Osanai, Y., Owada, M., Hokada, T. & Toyoshima, T. 2008 a. Carbonic fluids in ultrahigh-temperature metamorphism: evidence from Raman spectroscopic study of fluid inclusions in granulites from the Napier Complex, East Antarctica. In Geodynamic Evolution of East Antarctica: A Key to the East-West Gondwana Connection (eds Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y. & Shiraishi, K.), pp. 317–32. Geological Society of London, Special Publication no. 308.Google Scholar
Tsunogae, T., Santosh, M., Ohyama, H. & Sato, K. 2008 b. High-pressure and ultrahigh-temperature metamorphism at Komateri, northern Madurai Block, southern India. Journal of Asian Earth Sciences 33, 395413.CrossRefGoogle Scholar
Waters, D. J. 1990. Thermal history and tectonic setting of the Namaqualand granulites, southern Africa: clues to Proterozoic crustal development. In Granulites and Crustal Evolution (eds Vielzeuf, D. & Vidal, P.), pp. 243–56. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Yoshimura, Y., Motoyoshi, Y. & Miyamoto, T. 2003. Sapphirine–garnet–orthopyroxene granulite from Rundvågshetta in the Lützow-Holm Complex, East Antarctica. The 23rd Symposium on Antarctic Geoscience, Program and Abstracts (NIPR, Japan), 74 pp.Google Scholar
Supplementary material: File

Tsunogae supplementary material

Tables.xls

Download Tsunogae supplementary material(File)
File 90.6 KB
Supplementary material: Image

Tsunogae supplementary material

Colour Figure.jpg

Download Tsunogae supplementary material(Image)
Image 546.6 KB