Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T05:57:40.472Z Has data issue: false hasContentIssue false

Unravelling basin shoulder dynamics through detrital apatite fission-track signature: the case of the Quaternary Mugello Basin, Italy

Published online by Cambridge University Press:  13 March 2017

MARIA LAURA BALESTRIERI*
Affiliation:
CNR, Istituto di Geoscienze e Georisorse, Via La Pira, 4, 50121, Firenze, Italy
MARCO BENVENUTI
Affiliation:
CNR, Istituto di Geoscienze e Georisorse, Via La Pira, 4, 50121, Firenze, Italy Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira, 4, 50121, Firenze, Italy
RITA CATANZARITI
Affiliation:
CNR, Istituto di Geoscienze e Georisorse, Via Moruzzi 1 56124 Pisa, Italy
*
Author for correspondence: balestrieri@igg.cnr.it

Abstract

Detrital apatite fission-track (AFT) thermochronology has been applied to lower Pleistocene lacustrine fan-delta sediments of the NE shoulder of the Mugello Basin, the youngest and closest to the main watershed among the Northern Apennines intermontane basins. The aim was to decode the shoulder uplift dynamics during the development of the basin through the analysis of the Quaternary fluvio-lacustrine deposits. Bedrock shoulder analysis, performed to match the detrital AFT data with their source, revealed the presence of a unexpected only partially annealed portion of a turbidite foredeep unit (AFT ages >7–5 Ma) belonging to the structural complex that constitutes the shoulder bedrock. These data disagree with the AFT age distribution pattern of the well-studied Northern Apennines chain, suggesting a segmentation of the foredeep basin. The latter may have been related to the presence of a tectonically induced topographic high (pre-late Langhian) in the area limiting the thickness of the overriding Ligurian lid. On the other hand, detrital AFT data provided arguments for understanding the dynamics of Mugello Basin shoulder uplift and rotation. The proportion in the different stratigraphic units of the fan-delta sediments of single grains showing young (reset) and old (non-reset) ages points to late Early Pleistocene timing of the development of the SW-verging backthrust that characterizes the study area. These data confirm and detail the picture of an early Quaternary development of the Mugello Basin under a compressional setting, only later (middle Pleistocene to present) superimposed by normal faultings.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbazzi, L., Benvenuti, M., Rook, L. & Masini, F. 1995. Biochronology of the Mugello intermontane basin (Northern Apennines, Italy). Il Quaternario 8, 510.Google Scholar
Anadon, P., Cabrera, L., Columbo, F., Marzo, M. & Riba, O. 1986. Syntectonic intraformational unconformities in alluvial fan deposits, eastern Ebro Basin margins (NE Spain). In Foreland Basins (eds Allen, P. A. & Homewood, P.), pp. 259–71. International Association of Sedimentologists, Special Publication no 8.Google Scholar
Anfinson, O. A., Malusà, M. G., Ottria, G., Dafov, L. N. & Stockli, D. F. 2016. Tracking coarse-grained gravity flows by LASS-ICP-MS depth-profiling of detrital zircon (Aveto Formation, Adriatic foredeep, Italy). Marine and Petroleum Geology 77, 1163–76.Google Scholar
Argnani, A. 2012. Plate motion and the evolution of Alpine Corsica and Northern Apennines. Tectonophysics 579, 207–19.Google Scholar
Balestrieri, M. L., Benvenuti, M. & Tangocci, F. 2013. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The the case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy). Sedimentary Geology 289, 159–68.Google Scholar
Balestrieri, M. L., Pandeli, E., Bigazzi, G., Carosi, R. & Montomoli, C. 2011. Age and temperature constraints on metamorphism and exhumation of the syn-orogenic metamorphic complexes of Northern Apennines, Italy. Tectonophysics 509, 254–71.Google Scholar
Barbarand, J., Carter, A., Wood, I. & Hurford, T. 2003. Compositional and structural control of fission-track annealing in apatite. Chemical Geology 198, 107–37.Google Scholar
Benvenuti, M. 1997. Physical stratigraphy of the fluvial-lacustrine Mugello Basin (Pleistocene, Northern Apennines, Italy). Giornale di Geologia 59, 91111.Google Scholar
Benvenuti, M. 2003. Facies analysis and tectonic significance of lacustrine fan-deltaic successions in the Pliocene-Pleistocene Mugello Basin, Central Italy. Sedimentary Geology 157, 197234.Google Scholar
Bernet, M. & Spiegel, C. 2004. Introduction: detrital thermochronology. In Detrital Thermochronology – Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts (eds Bernet, M. & Spiegel, C.), pp. 16. Geological Society of America, Special Paper no. 378.Google Scholar
Boccaletti, M., Bonini, M., Moratti, G. & Sani, F. 1995. Le fasi compressive neogenico-quaternarie nell'Appennino Settentrionale: relazioni con l'evoluzione dei bacini interni e con la tettonica del basamento. In Atti del Convegno “Geodinamica e tettonica attiva del sistema Tirreno-Appennino” (eds Cello, G., Deiana, G. & Pierantoni, P. P.), pp. 5172. Studi Geologici Camerti, Special Volume no. 1995/1.Google Scholar
Bonini, M. & Sani, F. 2002. Extension and compression in the Northern Apennines (Italy) hinterland: evidence from the late Miocene-Pliocene Siena-Radicofani Basin and relations with basement structures. Tectonics 21, 135.Google Scholar
Bown, P. R. & Young, J. R. 1998. Techniques. In Calcareous Nannofossil Biostratigraphy (ed. Bown, P. R.), pp. 1628. Dordrecht: Kluwer Academic Publishing.Google Scholar
Brandon, M. T. 1992. Decomposition of fission-track grain-age distributions. American Journal of Science 292, 535–64.Google Scholar
Brandon, M. T. 1996. Probability density plot for fi ssion-track grain-age samples. Radiation Measurements 26, 663–76.Google Scholar
Cerrina Feroni, A., Levi, N. & Ottria, G. 2008. Duplex architecture and late-orogenic backthrusting in Foredeep Units of the Northern Apennines (Italy). Geological Journal 43, 447–62.Google Scholar
Cerrina Feroni, A., Ottria, G. & Ellero, A. 2004. The Northern Apennine, Italy: geological structure and transpressive evolution. In Geology of Italy (eds Crescenti, U., D'Offizi, S., Merlino, S. & Sacchi, L.), pp. 1532. Italian Geological Society, Special Volume no. 32.Google Scholar
Cibin, U., Di Giulio, A., Martelli, L., Catanzariti, R., Poccianti, S., Rosselli, C. & Sani, F. 2004. Factors controlling foredeep turbidite deposition: the case of Northern Apennine (Oligo-Miocene, Italy). In Confined Turbidite System (eds Lomas, S. A. & Joseph, P.), pp. 115–34. Geological Society of London, Special Publication no. 222.Google Scholar
Coli, M., Landuzzi, A., Sani, F. & Vai, G. B. 1992. Da Firenze a Faenza (km 106). Una traversa dal Bacino di Firenze-Pistoia alla Pianura Padana attraverso il Mugello e l'Appennino romagnolo. In Guide Geologiche Regionali. Appennino Tosco-Emiliano (ed. Bortolotti, V.), pp. 224–43. Milan: BE-MA Ed.Google Scholar
Di Giulio, A. 1999. Mass transfer from the Alps to the Apennines: volumetric constraints in the provenance study of the Macigno-Modino source-basin system, Chattian–Aquitanian, northwestern Italy. Sedimentary Geology 124, 6980.Google Scholar
Di Giulio, A., Mancin, N., Martelli, L. & Sani, F. 2013. Foredeep palaeobathymetry and subsidence trends during advancing then retreating subduction: the Northern Apennine case (Oligocene-Miocene, Italy). Basin Research 25, 260–84.Google Scholar
Donelick, R. A., O'Sullivan, P. B. & Ketcham, R. A. 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry 58, 4994.Google Scholar
Dunkl, I. 2002. Trackkey: A windows program for calculation and graphical presentation of fission-track data. Computer Geosciences 28, 312.Google Scholar
Dunkl, I., Di Giulio, A. & Kuhlemann, J. 2001. Combination of single-grain fission-track chronology and morphological analysis of detrital zircon crystals in provenance studies: sources of the Macigno Formation (Apennines, Italy). Journal of Sedimentary Research 71, 516–25.Google Scholar
Fornaciari, E. & Rio, D. 1996. Latest Oligocene to early Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. Micropaleontology 42, 136.Google Scholar
Galbraith, R. F. 1981. On statistical models for fission track counts. Mathematical Geology 13, 471–78.Google Scholar
Galbraith, R. F. & Green, P. F. 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17, 197206.Google Scholar
Gallagher, K. 1995. Evolving temperature histories from apatite fission-track data. Earth and Planetary Science Letters 136, 421–35.Google Scholar
Gandolfi, G., Paganelli, L. & Zuffa, G. G. 1983. Petrology and dispersal pattern in the Marnoso-arenacea Formation (Miocene, Northern Apennines). Journal of Sedimentary Research 53, 493507.Google Scholar
Garver, J. I., Brandon, M. T., Roden-Tice, M. & Kamp, P. J. J. 1999. Erosional denudation determined by fission-track ages of detrital apatite and zircon. In Exhumation Processes: Normal Faulting, Ductile Flow, and Erosion (eds Ring, U., Brandon, M. T., Willett, S. & Lister, G.), pp. 283304. Geological Society of London, Special Publications no. 154.Google Scholar
Garzanti, E. & Malusà, M. G. 2008. The Oligocene Alps: Domal domal unroofing and drainage development during early orogenic growth. Earth and Planetary Science Letters 268 (3), 487500.Google Scholar
Gazzi, P. 1965. On the heavy mineral zones in the geosyncline series. Recent studies in the Northern Apennines, Italy. Journal of Sedimentary Petrology 35, 109–15.Google Scholar
GEMINA. 1962. Il bacino del Mugello. In Ligniti e Torbe dell'Italia Continentale/Indagini Geominerarie Effettuate nel Periodo 1958–1961 dalla Geomineraria Nazionale (GEMINA) di Roma. Roma: GEMINA, pp. 6170.Google Scholar
Green, P. F. & Duddy, I. R. 1989. Some comments on paleotemperature estimation from apatite fission track analysis. Journal of Petroleum Geology 12, 111–14.Google Scholar
Hurford, A. J. 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I.U.G.S. Sub commission on Geochronology. Chemical Geology 80, 171–8.Google Scholar
Ketcham, R. A. 2005. Forward and inverse modeling of low-temperature thermochronometry data. In Low-Temperature Thermochronology: Techniques, Interpretations, and Applications (eds Reiners, P. W. & Ehlers, T. A.), pp. 275314. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry no. 58.Google Scholar
Ketcham, R. A., Carter, A. C., Donelick, R. A., Barbarand, J. & Hurford, A. J. 2007a. Improved measurement of fission-track annealing in apatite using c-axis projection. The American Mineralogist 92, 789–98.Google Scholar
Ketcham, R. A., Carter, A. C., Donelick, R. A., Barbarand, J. & Hurford, A. J. 2007b. Improved modeling of fission-track annealing in apatite. The American Mineralogist 92, 799810.Google Scholar
Ketcham, R. A., Donelick, R. A., Balestrieri, M. L. & Zattin, M. 2009. Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth and Planetary Science Letters 284, 504–15.Google Scholar
Ketcham, R. A., Donelick, R. A. & Donelick, M. B. 2000. AFTSolve: A program for multi-kinetic modeling of apatite fission-track data. Geological Materials Research 2, 132.Google Scholar
Malusà, M. G., Anfinson, O. A., Dafov, L. N. & Stockli, D. F. 2016. Tracking Adria indentation beneath the Alps by detrital zircon U-Pb geochronology: Implications for the Oligocene–Miocene dynamics of the Adriatic microplate. Geology 44 (2), 155–8.Google Scholar
Malusà, M. G. & Balestrieri, M. L. 2012. Burial and exhumation across the Alps-Apennines junction zone constrained by fission-track analysis on modern river sands. Terra Nova 24, 221–26.Google Scholar
Malusà, M. G., Faccenna, C., Baldwin, S. L., Fitzgerald, P. G., Rossetti, F., Balestrieri, M. L., Danišík, M., Ellero, A., Ottria, G. & Piromallo, C. 2015. Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochemistry, Geophysics, Geosystems 16 (6), 1786–824.Google Scholar
Malusà, M. G., Resentini, A. & Garzanti, E. 2016. Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research 31, 119.Google Scholar
Martini, I. P. & Sagri, M. 1993. Tectono-sedimentary characteristics of Late Miocene-Quaternary extensional basins of the Northern Apennines, Italy. Earth Science Reviews 34, 197233.Google Scholar
Molli, G. & Malavieille, J. 2011. Orogenic processes and the Corsica/Apennines geodynamic evolution: insights from Taiwan. International Journal of Earth Sciences 100 (5), 1207–24.Google Scholar
O'Sullivan, P. B. & Parrish, R. R. 1995. The importance of apatite composition and single-grain ages when interpreting fission track data from plutonic rocks: a case study from the Coast Ranges, British Columbia. Earth and Planetary Science Letters 132, 213–24.Google Scholar
Riba, O. 1976. Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: a genetic interpretation. Sedimentary Geology 15, 213–33.Google Scholar
Rio, D., Raffi, I. & Villa, G. 1990. Pliocene-Pleistocene nannofossil distribution patterns in the Western Mediterranean. Proceedings of the Ocean Drilling Program. Scientific Results (eds Kastens, K. A. & Mascle, J.), pp. 513–33. College Station, Texas.Google Scholar
Sanesi, G. 1965. Geologia e morfologia dell'antico bacino lacustre del Mugello – Firenze. Bollettino Società Geologica Italiana 84, 169252.Google Scholar
Sani, F., Bonini, M., Piccardi, L., Vannucci, G., Delle Donne, D., Benvenuti, M., Moratti, G., Corti, G., Montanari, D., Sedda, L. & Tanini, C. 2009. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics. Tectonophysics 476, 336–56.Google Scholar
Thomson, S. N., Brandon, M. T., Reiners, P. W., Zattin, M., Isaacson, P. J. & Balestrieri, M. L. 2010. Thermochronologic evidence for orogen-parallel variability in wedge kinematics during extending convergent orogenesis of the northern Apennines, Italy. Geological Society of America Bulletin 122, 1160–79.Google Scholar
Ventura, B., Pini, G. A. & Zuffa, G. G. 2001. Thermal history and exhumation of the Northern Apennines (Italy): evidence from combined apatite fssion track and vitrinite refectance data from foreland basin sediments. Basin Research 13, 435–48.Google Scholar
Vermeesch, P. 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters 224, 441–51.Google Scholar
Vermeesch, P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiation Measurements 44, 409–10.Google Scholar
Zattin, M., Landuzzi, A., Picotti, V. & Zuffa, G. G. 2000. Discriminating between tectonic and sedimentary burial in a foredeep succession, Northern Apennines. Journal of the Geological Society 157, 629–33.Google Scholar
Zattin, M., Picotti, V. & Zuffa, G. G. 2002. Fission-track reconstruction of the front of the Northern Apennine thrust wedge and overlying Ligurian unit. American Journal of Science 302, 346–79.Google Scholar