Skip to main content Accessibility help
×
Home

LOCALIZATIONS OF THE HEARTS OF COTORSION PAIRS

  • YU LIU (a1)

Abstract

In this article, we study localizations of hearts of cotorsion pairs ( $\mathcal{U}, \mathcal{V}$ ) where $\mathcal{U}$ is rigid on an extriangulated category $\mathcal{B}$ . The hearts of such cotorsion pairs are equivalent to the functor categories over the stable category of $\mathcal{U}$ ( $\bmod \underline{\mathcal{U}}$ ). Inspired by Marsh and Palu (Nagoya Math. J.225(2017), 64–99), we consider the mutation (in the sense of Iyama and Yoshino, Invent. Math.172(1) (2008), 117–168) of $\mathcal{U}$ that induces a cotorsion pair ( $\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$ ). Generally speaking, the hearts of ( $\mathcal{U}, \mathcal{V}$ ) and ( $\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$ ) are not equivalent to each other, but we will give a generalized pseudo-Morita equivalence between certain localizations of their hearts.

Copyright

References

Hide All
1. Abe, N. and Nakaoka, H., General heart construction on a triangulated category (II): Associated cohomological functor, Appl. Categ. Struct. 20(2) (2012), 162174.
2. Auslander, M., Coherent functors, in 1966 Proceedings of the Conference on Categorical Algebra, La Jolla, California (Springer, New York, 1965), 189231.
3. Beilinson, A. A., Bernstein, J. and Deligne, P., pervers, Faisceaux, Analysis and topology on singular spaces, I (Luminy 1981), Astérisque, 100, (Soc. Math. France, Pairs, 1982), 5–171.
4. Buan, A. B. and Marsh, R. J., From triangulated categories to module categories via localisation, Trans. Amer. Math. Soc. 365(6) (2013), 28452861.
5. Buan, A. B. and Marsh, R. J., From triangulated categories to module categories via localisation II: calculus of fractions, J. Lond. Math. Soc. 87(2) (2013), 643.
6. Demonet, L. and Liu, Y., Quotients of exact categories by cluster tilting subcategories as module categories, J. Pure Appl. Alg. 217 (2013), 22822297.
7. Gabriel, P. and Zisman, M., Calculus of fractions and homotopy theory, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35 (Springer-Verlag New York Inc., New York, 1967).
8. Happel, D., Triangulated categories in the representation theory of finite-dimensional algebras, in London Mathematical Society, Lecture Note Series, vol. 119, (Cambridge University Press, Cambridge, 1988), x+208.
9. Iyama, O. and Yoshino, Y., Mutation in triangulated categories and rigid Cohen–Macaulay modules, Invent. Math. 172(1) (2008), 117168.
10. Liu, Y., Hearts of twin cotorsion pairs on exact categories, J. Algebra. 394 (2013), 245284.
11. Liu, Y., Half exact functors associated with general hearts on exact categories. arXiv: 1305.1433.
12. Liu, Y. and Nakaoka, H., Hearts of twin Cotorsion pairs on extriangulated categories, J. Algebra 528 (2019), 96149.
13. Marsh, R. J. and Palu, Y., Nearly Morita equivalences and rigid objects, Nagoya Math. J. 225(2017), 6499.
14. Nakaoka, H., General heart construction on a triangulated category (I): unifying t-structures and cluster tilting subcategories, Appl. Categ. Struct. 19(6) (2011), 879899.
15. Nakaoka, H., General heart construction for twin torsion pairs on triangulated categories, J. Algebra 374 (2013), 195215.
16. Nakaoka, H., Equivalence of hearts of twin cotorsion pairs on triangulated categories, Comm. Algebra 44(10) (2016), 43024326.
17. Nakaoka, H. and Palu, Y., Mutation via hovey twin cotorsion pairs and model structures in extriangulated categories. arXiv:1605.05607.
18. Zhou, Y. and Zhu, B., Mutation of torsion pairs in triangulated categories and its geometric realization, Algebr. Represent. Theory 21(4) (2018), 817832.

MSC classification

LOCALIZATIONS OF THE HEARTS OF COTORSION PAIRS

  • YU LIU (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.