1. Bavula, V. V., Generalized Weyl algebras and their representations, Algebra iAnal. 4 (3) (1992), 75β97; English transl. in *St. Petersburg Math. J.* **4** (1993), 71β92.

2. Bavula, V. V., Filter dimension of algebras and modules, a simplicity criterion for generalized Weyl algebras, Commun. Algebra 24 (1996), 1971β1992.

3. Brown, K. A. and Goodearl, K. R., Lectures on algebraic quantum groups, Advanced courses in mathematics β CRM Barcelona (BirkhΓ€user, Basel, Boston, Berlin, 2002).

4. Chatters, A. W., Non-commutative unique factorization domains, Math. Proc. Camb. Philos. Soc. 95 (1) (1984), 49β54.

5. Dixmier, J., Enveloping algebras, Graduate studies in mathematics, vol. 11 (American Mathematical Society, Providence, RI, 1996).

6. Fish, C. D. and Jordan, D. A., Connected quantized Weyl algebras and quantum cluster algebras, J. Pure Appl. Algebra (2017), DOI:10.1016/j.jpaa2017.09.019.

7. Jordan, D. A., Iterated skew polynomial rings and quantum groups, J. Algebra 174 (1993), 267β281.

8. Jordan, D. A., Height one prime ideals of certain iterated skew polynomial rings, Math. Proc. Camb. Philos. Soc. 114 (1993), 407β425.

9. Jordan, D. A., Primitivity in skew Laurent polynomial rings and related rings, Math. Z. 213 (1993), 353β371.

10. Jordan, D. A., Down-up algebras and ambiskew polynomial rings, J. Algebra 228 (2000), 311β346.

11. Jordan, D. A. and Wells, I. E., Invariants for automorphisms of certain iterated skew polynomial rings, Proc. Edinb. Math. Soc. 39 (1996), 461β472.

12. Jordan, D. A. and Wells, I. E., Simple ambiskew polynomial rings, J. Algebra 382 (2013), 46β70.

13. McConnell, J. C. and Pettit, J. J., Crossed products and multiplicative analogues of Weyl algebras, J. Lond. Math. Soc. 38 (2) (1988), 47β55.

14. McConnell, J. C. and Robson, J. C., Noncommutative noetherian rings, (Wiley, Chichester, 1987).

15. Smith, S. P., A class of algebras similar to the enveloping algebra of sl(2, β), Trans. Amer. Math. Soc. 322 (1990), 285β314.

16. Terwilliger, P. and Worawannotai, C., Augmented down-up algebras and uniform posets, Ars Math. Contemp. 6 (2) (2013), 409β417.