Skip to main content
×
×
Home

Disease burden and the role of pharmacogenomics in African populations

  • K. L. Mpye (a1), A. Matimba (a2), K. Dzobo (a3) (a4), S. Chirikure (a5), A. Wonkam (a1) and C. Dandara (a1)...
Abstract
Background.

The burden of communicable and non-communicable diseases in Sub-Saharan Africa poses a challenge in achieving quality healthcare. Although therapeutic drugs have generally improved health, their efficacy differs from individual to individual. Variability in treatment response is mainly because of genetic variants that affect the pharmacokinetics and pharmacodynamics of drugs.

Method.

The intersection of disease burden and therapeutic intervention is reviewed, and the status of pharmacogenomics knowledge in African populations is explored.

Results.

The most commonly studied variants with pharmacogenomics relevance are discussed, especially in genes coding for enzymes that affect the response to drugs used for HIV, malaria, sickle cell disease and cardiovascular diseases.

Conclusions.

The genetically diverse African population is likely to benefit from a pharmacogenomics-based healthcare approach, especially with respect to reduction of drug side effects, and separation of responders and non-responders leading to optimized drug choices and doses for each patient.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Disease burden and the role of pharmacogenomics in African populations
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Disease burden and the role of pharmacogenomics in African populations
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Disease burden and the role of pharmacogenomics in African populations
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited
Corresponding author
*Address for correspondence: C. Dandara, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7925, Cape Town, South Africa. (Email: collet.dandara@uct.ac.za)
References
Hide All
1. World Health Organization. Fact Sheet: World Malaria Report 2015 (Updated 19 April 2016). (http://www.who.int/malaria/media/world-malaria-report-2015/en/). Accessed 30 September 2016.
2. Mhalu, FS. Burden of diseases in poor resource countries: meeting the challenges of combating HIV/AIDS, tuberculosis and malaria. Tanzania Health Research Bulletin 2005; 7: 179184.
3. Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology 2014; 4: 177.
4. Munger, MA. Polypharmacy and combination therapy in the management of hypertension in elderly patients with co-morbid diabetes mellitus. Drugs & Aging 2010; 27: 871883.
5. Dandara, C, et al. Cytochrome P450 pharmacogenetics in African populations: implications for public health. Expert Opinion Drug Metabolism and Toxicology 2014; 10: 769785.
6. Ware, RE, et al. Predictors of fetal hemoglobin response in children with sickle cell anemia receiving hydroxyurea therapy. Blood 2002; 99: 1014.
7. Ganesh, SK, et al. Genetics and genomics for the prevention and treatment of cardiovascular disease: update a scientific statement from the American Heart Association. Circulation 2013; 128: 28132851.
8. Ross, CJ, et al. Pharmacogenomics of serious adverse drug reactions in pediatric oncology. Journal of Population Therapeutics and Clinical Pharmacology = Journal de la therapeutique des populations et de la pharamcologie clinique 2011; 18: e134e151.
9. Lynch, T, Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American Family Physician 2007; 76: 391396.
10. Lazarou, J, Pomeranz, BH, Corey, PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. The Journal of the American Medical Association 1998; 279: 12001205.
11. Gurwitz, JH, et al. Incidence and preventability of adverse drug events in nursing homes. American Journal of Medicine 2000; 109: 8794.
12. Dandara, C, et al. Editorial (An idea whose time has come? An African foresight observatory on genomics medicine and data-intensive global science). Current Pharmacogenomics and Personalized Medicine 2012; 10: 715.
13. Masimirembwa, C, Dandara, C, Hasler, J. Population diversity and pharmacogenomics in Africa (Chapter 43). In: Padmanabhan, S, ed. Handbook of Pharmacogenomics and Stratified Medicine. San Diego: Academic Press, 2014, pp. 971998.
14. Kitzmiller, JP, et al. Pharmacogenomic testing: relevance in medical practice: why drugs work in some patients but not in others. Cleveland Clinic Journal of Medicine 2011; 78: 243257.
15. Hansen, NT, Brunak, S, Altman, RB. Generating genome-scale candidate gene lists for pharmacogenomics. Clinical Pharmacology and Therapeutics 2009; 86: 183189.
16. Relling, M, Evans, W. Pharmacogenomics in the clinic. Nature 2015; 526: 343350.
17. Dunnenberger, HM, et al. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annual Review of Pharmacology and Toxicology 2015; 55: 89106.
18. Niemi, M, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004; 14: 429440.
19. Kivisto, KT, Niemi, M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharmaceutical Research 2007; 24: 239247.
20. Ho, RH, et al. Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenetics and Genomics 2007; 17: 647656.
21. Navarro, A, et al. microRNA expression profiles identify subtypes of mantle cell lymphoma with different clinicobiological characteristics. Clinical Cancer Research 2013; 19: 31213129.
22. Peedicayil, J. Pharmacoepigenetics and pharmacoepigenomics. Pharmacogenomics 2008; 9: 17851786.
23. Wilson, H. Pharmacogenomics failing to reach developing countries. The Pharmacogenomics Journal 2014; 15: 731732.
24. Kampira, E, et al. Mitochondrial DNA subhaplogroups L0a2 and L2a modify susceptibility to peripheral neuropathy in malawian adults on stavudine containing highly active antiretroviral therapy. Journal of Acquired Immune Deficiency Syndromes 2013; 63: 647652.
25. Mukonzo, JK, et al. Influence of efavirenz pharmacokinetics and pharmacogenetics on neuropsychological disorders in Ugandan HIV-positive patients with or without tuberculosis: a prospective cohort study. BMC Infectious Diseases 2013; 13: 261.
26. Ngaimisi, E, et al. Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: a parallel-group prospective cohort study in two sub-Saharan Africa populations. PloS ONE 2013; 8: e67946.
27. Swart, M, et al. High predictive value of CYP2B6 SNPs for steady-state plasma efavirenz levels in South African HIV/AIDS patients. Pharmacogenetics and Genomics 2013; 23: 415427.
28. Dhoro, M, et al. CYP2B6*6, CYP2B6*18, Body weight and sex are predictors of efavirenz pharmacokinetics and treatment response: population pharmacokinetic modeling in an HIV/AIDS and TB cohort in Zimbabwe. BMC Pharmacology and Toxicology 2015; 16: 4.
29. Ouattara, A, et al. Designing malaria vaccines to circumvent antigen variability. Vaccine 2015; 33: 75067512.
30. Gadalla, NB, et al. Prevalence of Plasmodium falciparum anti-malarial resistance-associated polymorphisms in pfcrt, pfmdr1 and pfnhe1 in Muheza, Tanzania, prior to introduction of artemisinin combination therapy. Malaria Journal 2015; 14: 129.
31. Zhang, W, et al. Pharmacogenomic Discovery Delineating the Genetic Basis of Drug Response. Current Genetic Medicine Reports 2013; 1: 143149.
32. Matimba, A, et al. Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes. The Pharmacogenomics Journal 2013; 15: 433447.
33. Wang, L, Weinshilboum, RM. Pharmacogenomics: candidate gene identification, functional validation and mechanisms. Human Molecular Genetics 2008; 17: R174R179.
34. Gamazon, ER, Huang, RS, Cox, NJ. SCAN: a systems biology approach to pharmacogenomic discovery. Methods in Molecular Biology 2013; 1015: 213224.
35. Karnes, JH, et al. Using systems approaches to address challenges for clinical implementation of pharmacogenomics. Wiley Interdisciplinary Reviews Systems Biology and Medicine 2014; 6: 125135.
36. SanGiovanni, JP, et al. Application and interpretation of genome-wide association (GWA) studies for informing pharmacogenomic research – examples from the field of age-related macular degeneration. Current Molecular Medicine 2014; 14: 814832.
37. Wang, B, et al. Clinical evidence supporting pharmacogen omic biomarker testing provided in US Food and Drug Administration drug labels. JAMA Internal Medicine 2014; 174: 19381944.
38. Sirugo, G, et al. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Human Genetics 2008; 123: 557598.
39. Masimirembwa, C, et al. Phenotype and genotype analysis of debrisoquine hydroxylase (CYP2D6) in a black Zimbabwean population. Reduced enzyme activity and evaluation of metabolic correlation of CYP2D6 probe drugs. European Journal of Clinical Pharmacology 1996; 51: 117122.
40. Sachs, J, Malaney, P. The economic and social burden of malaria. Nature 2002; 415: 680685.
41. Rendic, S, Guengerich, FP. Update information on drug metabolism systems-2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Current Drug Metabolism 2010; 11: 484.
42. Bains, RK, et al. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa. BMC Genetics 2013; 14: 34.
43. Alessandrini, M, et al. Cytochrome P450 pharmacogenetics in African populations. Drug Metabolism Reviews 2013; 45: 253275.
45. Arts, EJ, Hazuda, DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspectives in Medicine 2012; 2: a007161.
46. Yimer, G, et al. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naive HIV patients from Ethiopia: a prospective cohort study. The Pharmacogenomics Journal 2012; 12: 499506.
47. Klein, K, et al. Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenetics and Genomics 2005; 15: 861873.
48. Gounden, V, et al. Presence of the CYP2B6 516G> T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Research and Therapy 2010; 7: 32.
49. Nyakutira, C, et al. High prevalence of the CYP2B6 516G→T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. European Journal of Clinical Pharmacology 2008; 64: 357365.
50. Maganda, BA, et al. CYP2B6*6 genotype and high efavirenz plasma concentration but not nevirapine are associated with low lumefantrine plasma exposure and poor treatment response in HIV-malaria-coinfected patients. The Pharmacogenomics Journal 2016; 16: 8895.
51. di Iulio, J, et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenetics and Genomics 2009; 19: 300309.
52. Puls, R, et al. Efficacy of 400 mg efavirenz versus standard 600 mg dose in HIV-infected, antiretroviral-naive adults (ENCORE1): a randomised, double-blind, placebo-controlled, non-inferiority trial. Lancet (London, England) 2014; 383: 14741482.
53. Maimbo, M, et al. CYP2B6 genotype is a strong predictor of systemic exposure to efavirenz in HIV-infected Zimbabweans. European Journal of Clinical Pharmacology 2012; 68: 267271.
54. Wennerholm, A, et al. The African-specific CYP2D617 allele encodes an enzyme with changed substrate specificity. Clinical Pharmacology and Therapeutics 2002; 71: 7788.
55. Sim, SC, Kacevska, M, Ingelman-Sundberg, M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. The Pharmacogenomics Journal 2013; 13: 111.
56. Zembutsu, H. Pharmacogenomics toward personalized tamoxifen therapy for breast cancer. Pharmacogenomics 2015; 16: 287296.
57. Lisbeth, P, et al. Genotype and co-medication dependent CYP2D6 metabolic activity: effects on serum concentrations of aripiprazole, haloperidol, risperidone, paliperidone and zuclopenthixol. European Journal of Clinical Pharmacology 2016; 72: 175184.
58. Kirchheiner, J, Seeringer, A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochimica et biophysica acta 2007; 1770: 489494.
59. Fohner, A, et al. Pharmacogenetics in American Indian populations: analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes. Pharmacogenetics and Genomics 2013; 23: 403414.
60. World health Organization: Cardiovascular Disease. (http://www.who.int/cardiovascular_diseases/en/ 2016) last accessed 30 September 2016.
61. Cappuccio, FP, Miller, MA. Cardiovascular disease and hypertension in sub-Saharan Africa: burden, risk and interventions. Internal and Emergency Medicine 2016; 11: 299305.
62. Scott, SA, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clinical Pharmacology and Therapeutics 2011; 90: 328332.
63. Wang, ZY, et al. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Therapeutics and Clinical Risk Management 2015; 11: 449467.
64. Moaddeb, J, Haga, SB. Pharmacogenetic testing: current evidence of clinical utility. Therapeutic Advances in Drug Safety 2013; 4: 155169.
65. Natarajan, S, et al. Effect of CYP2C9 and VKORC1 genetic variations on warfarin dose requirements in Indian patients. Pharmacological Reports 2013; 65: 13751382.
66. Schelleman, H, et al. Dosing algorithms to predict warfarin maintenance dose in Caucasians and African Americans. Clinical Pharmacology and Therapeutics 2008; 84: 332339.
67. Mitchell, C, Gregersen, N, Krause, A. Novel CYP2C9 and VKORC1 gene variants associated with warfarin dosage variability in the South African black population. Pharmacogenomics 2011; 12: 953963.
68. Aithal, GP, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717719.
69. Yin, T, Miyata, T. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 – rationale and perspectives. Thrombosis Research 2007; 120: 110.
70. Dang, MT, Hambleton, J, Kayser, SR. The influence of ethnicity on warfarin dosage requirement. The Annals of Pharmacotherapy 2005; 39: 10081012.
71. Hu, M, Tomlinson, B. Pharmacogenomics of lipid-lowering therapies. Pharmacogenomics 2013; 14: 981995.
72. Gelissen, IC, Brown, AJ. Predicting response to statins by pharmacogenetic testing. Pharmacogenomics 2012; 13: 12231225.
73. Canestaro, WJ, et al. Statin pharmacogenomics: opportunities to improve patient outcomes and healthcare costs with genetic testing. Journal of Personalized Medicine 2012; 2: 158174.
74. Au, A, et al. The influence of OLR1 and PCSK9 gene polymorphisms on ischemic stroke: evidence from a meta-analysis. Scientific Reports 2015; 5: 18224.
75. Ancheta, IB, et al. The association between KIF6 single nucleotide polymorphism rs20455 and serum lipids in Filipino-American Women. Nursing Research and Practice 2014; 2014: 328954.
76. Marwa, KJ, et al. Cytochrome P450 single nucleotide polymorphisms in an indigenous Tanzanian population: a concern about the metabolism of artemisinin-based combinations. Malaria Journal 2014; 13: 420.
77. Arnaldo, P, et al. Frequencies of cytochrome P450 2B6 and 2C8 allelic variants in the Mozambican population. Malaysian Journal of Medical Sciences 2013; 20: 1323.
78. Kudzi, W, Dodoo, AN, Mills, JJ. Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Medical Genetics 2009; 10: 124.
79. Paganotti, GM, et al. Human genetic variation is associated with Plasmodium falciparum drug resistance. Journal of Infectious Disease 2011; 204: 17721778.
80. Bains, RK. African variation at cytochrome P450 genes: evolutionary aspects and the implications for the treatment of infectious diseases. Evolution, Medicine, and Public Health 2013; 2013: 118134.
81. Modell, B, Darlison, M. Global epidemiology of haemoglobin disorders and derived service indicators. Bulletin of the World Health Organization 2008; 86: 480487.
82. Ndefo, UA, et al. Pharmacological management of sickle cell disease. P & T: a Peer-reviewed Journal for Formulary Management 2008; 33: 238243.
83. McAuley, CF, et al. High mortality from Plasmodium falciparum malaria in children living with sickle cell anemia on the coast of Kenya. Blood 2010; 116: 16631668.
84. Makani, J, et al. Malaria in patients with sickle cell anemia: burden, risk factors, and outcome at the outpatient clinic and during hospitalization. Blood 2010; 115: 215220.
85. Grosse, SD, et al. Sickle cell disease in Africa: a neglected cause of early childhood mortality. American Journal of Preventive Medicine 2011; 41 (6 Suppl. 4): S398S405.
86. Makani, J, et al. Sickle cell disease: new opportunities and challenges in Africa. The Scientific World Journal 2013; 2013: 193252.
87. Okwi, AL, et al. An up-date on the prevalence of sickle cell trait in Eastern and Western Uganda. BMC Blood Disorders 2010; 10: 5.
88. Charache, S, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. The New England Journal of Medicine 1995; 332: 13171322.
89. Pino, P, et al. Effects of hydroxyurea on malaria, parasite growth and adhesion in experimental models. Parasite Immunology 2006; 28: 675680.
90. Green, NS, Barral, S. Genetic modifiers of HbF and response to hydroxyurea in sickle cell disease. Pediatric Blood and Cancer 2011; 56: 177181.
91. Wonkam, A, et al. Association of variants at BCL11A and HBS1L-MYB with hemoglobin F and hospitalization rates among sickle cell patients in Cameroon. PLoS ONE 2014; 9: e92506.
92. Mtatiro, SN, et al. Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania. PLoS ONE 2014; 9: e111464.
93. Mtatiro, SN, et al. Genetic association of fetal-hemoglobin levels in individuals with sickle cell disease in Tanzania maps to conserved regulatory elements within the MYB core enhancer. BMC Medical Genetics 2015; 16: 4.
94. World Health Organization. Health Statistics and Information Systems: Global Health Estimates (https://africacheck.org/factsheets/factsheet-the-leading-causes-of-death-in-africa/). Accessed 18 June 2016.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Global Health, Epidemiology and Genomics
  • ISSN: -
  • EISSN: 2054-4200
  • URL: /core/journals/global-health-epidemiology-and-genomics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed