Skip to main content

Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures

  • Timothy E. Crews (a1), Wim Carton (a2) and Lennart Olsson (a2)
Non-technical summary

Modern agriculture is associated with numerous environmental predicaments, such as land degradation, water pollution, and greenhouse gas emission. Socio-economically, it is characterized by a treadmill of technological change, increased mechanization, and economic consolidation, while depressing economic returns to farmers. A root cause is the dominance of annual plants cultivated in monocultures. Annual crops require the yearly clearing of vegetation resulting in soil erosion and other forms of ecosystem degradation. Monocultures are susceptible to agricultural pests and weeds. By contrast, perennial polycultures informed by natural ecosystems, promise more sustainable agroecosystems with the potential to also revitalize the economic foundation of farming and hence rural societies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
Author for correspondence: T. E. Crews, E-mail:
Hide All
1.Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 29592971.
2.Crews, T. E., Blesh, J., Culman, S. W., Hayes, R. C., Steen Jensen, E., Mack, M. C., Peoples, M. B. & Schipanski, M. E. (2016). Going where no grains have gone before: from early to mid-succession. Agriculture, Ecosystems and Environment, 223, 223238.
3.Head, J. W. (2012). Global legal regimes to protect the world's grasslands. Carolina: Carolina Academic Press.
4.Suttie, J. M., Reynolds, S. G., & Batello, C. (2005). Grasslands of the world. Rome: Food and Agriculture Organization of the United Nations.
5.Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 95759580.
6.Smil, V. (1994). Energy in world history. Winnipeg: University of Manitoba.
7.Gliessman, S. R. (2007). Agroecology: the ecology of sustainable food systems (2nd edition). Florida: CRC Press.
8.Malm, A. (2016). Fossil capital: the rise of steam power and the roots of global warming. London: Verso.
9.Pimentel, D., & Pimentel, M. (2007). Food, energy, and society. Florida: CRC Press.
10.Sassenrath, G. F., Heilman, P., Luschei, E., Bennett, G. L., Fitzgerald, G., Klesius, P., Tracy, W., Williford, J. R., & Zimba, P. V. (2008). Technology, complexity and change in agricultural production systems. Renewable Agriculture and Food Systems, 23(4), 285295.
11.MacDonald, J. M., Korb, P., & Hoppe, R. A. (2013). Farm size and the organization of U.S. crop farming. Washington, D.C., USA: Economic Research Service.
12.Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337342.
13.Ewel, J. J. (1999). Natural systems as models for the design of sustainable systems of land use. Agroforestry Systems, 45(1/3), 121.
14.Crews, T. E., & Cattani, D. J. (2018). Strategies, advances, and challenges in breeding perennial grain crops. Sustainability (Switzerland), 10(7), 2192.
15.Wright, E. O. (2010). Envisioning real utopias. London: Verso.
16.Wright, E. O. (2007). Guidelines for envisioning real utopias. Soundings, 36(Summer), 2639.
17.Brady, N. C., & Weil, R. R. (2010). Elements of the nature and properties of soils (3rd edition). Essex: Pearson Educational International.
18.Bardgett, R. D., & Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505511.
19.Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., Singh, B. K., & Fierer, N. (2018). A global atlas of the dominant bacteria found in soil. Science, 359(6373), 320325.
20.Jenny, H. (1980). The soil resource: origin and behavior (Ecological studies; v. 37). New York: Springer-Verlag.
21.Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 1326813272.
22.Crews, T. E., & Rumsey, B. E. (2017). What agriculture can learn from native ecosystems in building soil organic matter: a review. Sustainability (Switzerland), 9(4), 118.
23.Tilman, D. (1982). Resource competition and community structure. New Jersey: Princeton University Press.
24.Olson, D., & Cox, R. (2017). California Central Valley Grasslands. World Wildlife Fund. Retrieved from
25.Ryals, R., & Silver, W. L. (2013). Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands. Ecological Applications, 23(1), 4659.
26.Hillel, D. (1992). Out of the earth: civilization and the life of the soil. California: University of California Press.
27.Vezina, K., Bonn, F., & Van, C. P. (2006). Agricultural land-use patterns and soil erosion vulnerability of watershed units in Vietnam's northern highlands. Landscape Ecology, 21(8), 13111325.
28.Montgomery, D. R. (2007). Dirt: the erosion of civilizations. California: University of California Press.
29.Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438447.
30.Food and Agriculture Organization (2015). Status of the world's soil resources: technical summary. ISBN 978-92-5-109004-6. Rome: Food and Agriculture Organization.
31.Jackson, W. (1980). New roots for agriculture. Nebraska: University of Nebraska Press.
32.Davidson, E. A., & Ackerman, I. L. (1993). Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 20(3), 161193.
33.Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 4956.
34.Saugier, B., Roy, J. & Mooney, H. A. (2001) Estimations of global terrestrial productivity: converging toward a single number? In Roy, J., Saugier, B., & Mooney, H. A (eds), Terrestrial global productivity (pp. 543557). San Diego: Academic Press.
35.Douds, D. D., & Seidel, R. (2012). The contribution of arbuscular mycorrhizal fungi to the success or failure of agricultural practices. In Cheeke, T. E., Coleman, D. C., & Wall, D. H. (eds), Microbial ecology in sustainable agroecosystems (pp. 133152). Florida: CRC Press.
36.Chapin, F. S., Matson, P. A., Vitousek, P. M., & Chapin, M. C. (2011). Principles of terrestrial ecosystem ecology (2nd ed.). Berlin: Springer Science & Business Media.
37.Goudrian, J., Goot, J. J. R., & Uithol, P. W. J. (2001). Productivity of agro-ecosystems. In Roy, J., Saugier, B., & Mooney, H. A (eds), Terrestrial global productivity (pp. 301314). San Diego: Academic Press.
38.Grandy, A. S., & Neff, J. C. (2008). Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Science of the Total Environment, 404(2–3), 297307.
39.Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84(4), 355363.
40.Lal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food Policy, 36(Suppl. 1), 3339.
41.DeLuca, T. H., & Zabinski, C. A. (2011). Prairie ecosystems and the carbon problem. Frontiers in Ecology and the Environment, 9(7), 407413.
42.Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., & Zeng, N. (2015). Global Carbon Budget 2015. Earth System Science Data, 7, 349396.
43.Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., & Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 1164511650.
44.Brookes, P. (2001). The soil microbial biomass: concept, measurement and applications in soil ecosystem research. Microbes and Environments, 16(3), 131140.
45.Dick, R. P. (2013). Microbial ecology in sustainable agroecosystems. In Cheeke, T. E., Coleman, D. C., & Wall, D. H. (eds), Microbial ecology in sustainable agroecosystems (pp. 2348). Florida: CRC Press.
46.Steenwerth, K. L., Jackson, L. E., Calderon, F. J., Stromberg, M. R., & Scow, K. M. (2002). Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biology & Biochemistry, 34(11), 15991611.
47.Culman, S. W., DuPont, S. T., Glover, J. D., Buckley, D. H., Fick, G. W., Ferris, H., & Crews, T. E. (2010). Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agriculture, Ecosystems and Environment, 137(1–2), 1324.
48.Li, N., Yao, S. H., You, M. Y., Zhang, Y. L., Qiao, Y. F., Zou, W. X., Han, X. Z., & Zhang, B. (2014). Contrasting development of soil microbial community structure under no-tilled perennial and tilled cropping during early pedogenesis of a Mollisol. Soil Biology and Biochemistry, 77, 221232.
49.Rosenzweig, S. T., Carson, M. A., Baer, S. G., & Blair, J. M. (2016). Changes in soil properties, microbial biomass, and fluxes of C and N in soil following post-agricultural grassland restoration. Applied Soil Ecology, 100, 186194.
50.Rasche, F., Blagodatskaya, E., Emmerling, C., Belz, R., Musyoki, M. K., Zimmermann, J., & Martin, K. (2017). A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems. Ecosphere, 8(12), e02048.
51.Bever, J. D., Platt, T. G., & Morton, E. R. (2012). Microbial population and community dynamics on plant roots and their feedbacks in plant communities. Annual Review of Microbiology, 66(131), 265283.
52.Koziol, L., Bever, J. D., & Hawkes, C. V. (2015). Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology, 96(7), 17681774.
53.Huggins, D. R., & Reganold, J. P. (2008). No-till: the quiet revolution. Scientific American, (July), 7177.
54.Derpsch, R., Friedrich, T., Kassam, A., & Hongwen, L. (2010). Current status of adoption of no-till farming in the world and some of its main benefits. International Journal of Agricultural and Biological Engineering, 3(1), 125.
55.Six, J., Elliot, E. T., & Paustian, K. (2000). Soil microaggregate turnover and microaggregate formation: a mechanism for C organic under no-tillage agriculture. Soil Biology and Biochemistry, 32(14), 20992103.
56.VandenBygaart, A. J. (2016). The myth that no-till can mitigate global climate change. Agriculture, Ecosystems and Environment, 216, 9899.
57.Cressey, D. (2015). Widely used herbicide linked to cancer. Nature News. Retrieved from
58.Ward, E. M. (2018). Glyphosate use and cancer incidence in the agricultural health study: an epidemiologic perspective. Journal of the National Cancer Institute, 110(5), 446447.
59.Andreotti, G., Koutros, S., Hofmann, J. N., Sandler, D. P., Lubin, J. H., Lynch, C. F., Lerro, C. C., De Roos, A. J., Parks, C. G., Alavanja, M. C., Silverman, D. T., & Beane Freeman, L. E. (2017). Glyphosate use and cancer incidence in the agricultural health study. Journal of the National Cancer Institute, 110(5), 509516.
60.Hassan, S. A., Akhlaq, F., Tayyab, M., Awan, A. R., Firyal, S., Khan, W. A., Saif, R., & Wasim, M. (2017). Glyphosate: cancerous or not? Perspectives from both ends of the debate. Advancements in Life Sciences – International Quarterly Journal of Biological Sciences, 4(4), 108112.
61.Rose, M. T., Cavagnaro, T. R., Scanlan, C. A., Rose, T. J., Vancov, T., Kimber, S., Kennedy, I. R., Kookana, R. S., & Van Zwieten, L. (2016). Impact of herbicides on soil biology and function. Advances in Agronomy, 136, 133220.
62.Bomfim, N. C. P., Costa, B. G. P., Souza, L. A., Justino, G. C., Aguiar, L. F., & Camargos, L. S. (2017). Glyphosate effect on nitrogen fixation and metabolization in RR soybean. Journal of Agricultural Science, 9(10), 114.
63.Gaupp-Berghausen, M., Hofer, M., Rewald, B., & Zaller, J. G. (2015). Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Scientific Reports, 5, 12886.
64.Zaller, J. G., Heigl, F., Ruess, L., & Grabmaier, A. (2014). Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Scientific Reports, 4, 5634.
65.Druille, M., García-Parisi, P. A., Golluscio, R. A., Cavagnaro, F. P., & Omacini, M. (2016). Repeated annual glyphosate applications may impair beneficial soil microorganisms in temperate grassland. Agriculture, Ecosystems & Environment, 230, 184190.
66.Gould, F., Brown, Z. S., & Kuzma, J. (2018). Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science, 360(6390), 728732.
67.Center for Food Safety (2015). Lawsuit Challenging EPA Approval of Herbicide Advances. Retrieved from
68.Mortensen, D. A., Egan, J. F., Maxwell, B. D., Ryan, M. R., & Smith, R. G. (2012). Navigating a critical juncture for sustainable weed management. BioScience, 62(1), 7584.
69.Vitousek, P. M., & Reiners, W. A. (2013). Ecosystem succession and nutrient retention: a hypothesis. BioScience, 25(6), 376381.
70.Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., & Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 11351142.
71.Sharpley, A., & Rekolainen, S. (1997). Phosphorus in agriculture and its environmental implications. In Tunney, H. et al. (ed), Phosphorus loss from soil to water (pp. 154). Cambridge: CAB International Press.
72.United Nations Environment Programme. Why is eutrophication such a serious pollution problem. Division of Technology, Industry and Economics: newsletter and technical publications: lakes and reservoirs vo. 3. Retrieved from
73.Broussard, W., & Turner, R. E. (2009). A century of changing land-use and water-quality relationships in the continental US. Frontiers in Ecology and the Environment, 7(6), 302307.
74.Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., & Zhang, J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7(2), 585619.
75.Turner, R. E., & Rabalais, N. N. (2009). Linking landscape and water quality in the Mississippi river basin for 200 years, 53(6), 563572.
76.Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926929.
77.Marschner, H. (1995). Mineral nutrition of higher plants. 1, 889. London: Academic Press Retrieved from
78.Basche, A., & DeLonge, M. (2017). The impact of continuous living cover on soil hydrologic properties: a meta-analysis. Soil Science Society of America Journal, 81(5), 1179.
79.Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and belowground aboveground allometries of plants in water limited ecosystems. Journal of Ecology, 90(3), 480494.
80.Wuest, S. B., Williams, J. D., & Gollany, H. T. (2006). Tillage and perennial grass effects on ponded infiltration for seven semi-arid loess soils. Journal of Soil and Water Conservation, 61(4), 218223.
81.Rockstrom, J. (2003). Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1440), 19972009.
82.Falkenmark, M., & Rockström, J. (2008). Building resilience to drought in desertification-prone savannas in Sub-Saharan Africa: the water perspective. Natural Resources Forum, 32(2), 93102.
83.Hudson, B. D. (1994). Soil organic matter and available water capacity. Journal of Soil & Water Conservation, 49(2), 189194.
84.Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 16231627.
85.Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., MacE, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 5967.
86.Weisser, W. W., Roscher, C., Meyer, S. T., Ebeling, A., Luo, G., Allan, E., Beßler, H., Barnard, R. L., Buchmann, N., Buscot, F., Engels, C., Fischer, C., Fischer, M., Gessler, A., Gleixner, G., Halle, S., Hildebrandt, A., Hillebrand, H., de Kroon, H., Lange, M., Leimer, S., Le Roux, X., Milcu, A., Mommer, L., Niklaus, P. A., Oelmann, Y., Proulx, R., Roy, J., Scherber, C., Scherer-Lorenzen, M., Scheu, S., Tscharntke, T., Wachendorf, M., Wagg, C., Weigelt, A., Wilcke, W., Wirth, C., Schulze, E. D., Schmid, B., & Eisenhauer, N. (2017). Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic and Applied Ecology, 23, 173.
87.Duffy, J. E., Godwin, C. M., & Cardinale, B. J. (2017). Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549(7671), 261264.
88.Hooper, D. U., & Dukes, J. S. (2004). Overyielding among plant functional groups in a long-term experiment. Ecology Letters, 7(2), 95105.
89.DeHaan, L. R., Weisberg, S., Tilman, D., & Fornara, D. (2010). Agricultural and biofuel implications of a species diversity experiment with native perennial grassland plants. Agriculture, Ecosystems and Environment, 137(1–2), 3338.
90.Cardon, Z. G., Stark, J. M., Herron, P. M., & Rasmussen, J. A. (2013). Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 1898818993.
91.Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412(6842), 7276.
92.Bever, J. D., Mangan, S. A., & Alexander, H. M. (2015). Maintenance of plant species diversity by pathogens. Annual Review Ecology Evolution and Systematics 46, 305325.
93.Smith, V. H., McBride, R. C., Shurin, J. B., Bever, J. D., Crews, T. E., & Tilman, G. D. (2015). Crop diversification can contribute to disease risk control in sustainable biofuels production. Frontiers in Ecology and the Environment, 13(10), 561567.
94.Schnitzer, S. A., Klironomos, J. N., Hillerislambers, J., Kinkel, L. L., Reich, P. B., Xiao, K., Rillig, M. C., Sikes, B. A., Callaway, R. M., Mangan, S. A., Van Nes, E. H., & Scheffer, M. (2011). Soil microbes drive the classic plant diversity–productivity pattern. Ecology, 92(2), 296303. Retrieved from
95.Vandermeer, J. H. (2011). The ecology of agroecosystems. Massachusetts: Jones & Bartlett Learning.
96.Liebman, M. (1995). Polyculture cropping systems. In Altieri, M. A. (ed), Agroecology (pp. 205218). Florida: CRC Press.
97.Altieri, M. A. (1995). Agroecology, the science of sustainable agriculture. Florida: CRC Press.
98.Pimentel, D. (1961). Species diversity and insect population outbreaks. Annals of the Entomological Society of America, 54(1), 7686.
99.Elton, C. S. (1958). The ecology of invasions by animals and plants. London: Methuen.
100.Root, R. B. (1973). Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs, 43(1), 95124.
101.Mazoyer, M., & Roudart, L. (2006). A history of world agriculture: from the neolithic age to the current crisis. London: Earthscan.
102.Crews, T. E., & Peoples, M. B. (2004). Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agriculture, Ecosystems and Environment, 102(3), 279297.
103.Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 3143.
104.Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordano, S., Horowitz, A., & D'Amore, M. (1993). Assessment of environmental and economic impacts of pesticide use. In Pimentel, D., & Lehman, H. (ed), The pesticide question (pp. 4784). London: Chapman and Hall.
105.Stokstad, E. (2013). How big a role should neonicotinoids play in food security? Science, 340(6133), 675.
106.Budge, G. E., Garthwaite, D., Crowe, A., Boatman, N. D., Delaplane, K. S., Brown, M. A., Thygesen, H. H., & Pietravalle, S. (2015). Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape. Scientific Reports, 5, 12574.
107.Simon-Delso, N., Pisa, L., Van der Sluijs, J. P., Amaral-Rogers Buglife, V., Belzunces, L. P., Bonmatin, J. M., Downs, C., Furlan, L., Gibbons, D. W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C. H., Long, E., Liess, M., & McField, M. (2015). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 22, 534.
108.Kurwadkar, S., & Evans, A. (2016). Neonicotinoids: systemic insecticides and systematic failure. Bulletin of Environmental Contamination and Toxicology, 97(6), 745748.
109.Carson, R. (1962). Silent spring. Massachusetts: Houghton, Mifflin, Harcourt.
110.Griswold, E. (2012). How ‘silent spring’ ignited the environmental movement. New York Times Magazine, 1–9.
111.Yudelman, M., Ratta, A., Nygaard, D. F., International Food Policy Research Institute., & International Development Research Centre (Canada) (1998). Pest management and food production: looking to the future. Washington, D.C.: International Food Policy Research Institute.
112.Stanley, D. A., Garratt, M. P. D., Wickens, J. B., Wickens, V. J., Potts, S. G., & Raine, N. E. (2015). Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature, 528(7583), 548550.
113.Klatt, B. K., Rundlöf, M., & Smith, H. G. (2016). Maintaining the restriction on neonicotinoids in the european union – benefits and risks to bees and pollination services. Frontiers in Ecology and Evolution, 4, 4.
114.Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., & De Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10), e0185809.
115.Flocks, J. D. (2012). The environmental and social injustice of farmworker pesticide exposure. Georgetown Journal on Poverty Law & Policy, 255(2), 225282.
116.Kesavachandran, C. N., Fareed, M., Pathak, M. K., Bihari, V., Mathur, N., & Kumar Srivastava, A. (2009). Adverse health effects of pesticide in agrarian populations of developing countries. In Whitacre, D. M. (ed), Reviews of environmental contamination and toxicology vol. 200. New York: Springer.
117.Van Tassel, D. L., Dehaan, L. R., & Cox, T. S. (2010). Missing domesticated plant forms: can artificial selection fill the gap? Evolutionary Applications, 3(5–6), 434452.
118.Baker, B. (2017). Can modern agriculture be sustainable? BioScience, 67(4), 325331.
119.Van Tassel, D. L., Albrecht, K. A., Bever, J. D., Boe, A. A., Brandvain, Y., Crews, T. E., Gansberger, M., Gerstberger, P., González-Paleo, L., Hulke, B. S., Kane, N. C., Johnson, P. J., Pestsova, E. G., Picasso Risso, V. D., Prasifka, J. R., Ravetta, D. A., Schlautman, B., Sheaffer, C. C., Smith, K. P., Speranza, P. R., Turner, M. K., Vilela, A. E., von Gehren, P., & Wever, C. (2017). Accelerating silphium domestication: an opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Science, 57(3), 12741284.
120.Batello, C., Wade, L., Cox, S., Pogna, N., Bozzini, A., & Choptiany, J. (2014). Perennial crops for food security. Retrieved from
121.Nabukalu, P., & Cox, T. S. (2016). Response to selection in the initial stages of a perennial sorghum breeding program. Euphytica, 209(1), 103111.
122.Sprunger, C. D., Culman, S. W., Robertson, G. P., & Snapp, S. S. (2017). Perennial grain on a Midwest Alfisol shows no sign of early soil carbon gain. Renewable Agriculture and Food Systems, 33(4), 360372. Oliveira, G., Brunsell, N. A., Sutherlin, C. E., Crews, T. E., & DeHaan, L. R. (2018). Energy, water and carbon exchange over a perennial Kernza wheatgrass crop. Agricultural and Forest Meteorology, 249, 120137.
124.Vico, G., & Brunsell, N. A. (2017). Tradeoffs between water requirements and yield stability in annual vs. perennial crops. Advances in Water Resources, 112, 189202.
125.Woodmansee, R. (1978). Additions and losses of nitrogen in grassland ecosystems. Bioscience, 28(7), 448453.
126.Dodds, W. K., Blair, J. M., Henebry, G. M., Koelliker, J. K., Ramundo, R., & Tate, C. M. (1996). Nitrogen transport from tallgrass prairie watersheds. Journal of Environment Quality, 25(5), 973.
127.Masarik, K. C., Norman, J. M., Brye, K. R., & Masarik, K. C. (2014). Long-term drainage and nitrate leaching below well-drained continuous corn agroecosystems and a prairie. Journal of Environmental Protection, 5(5), 240254.
128.Kahmen, A., Renker, C., Unsicker, S. B., & Buchmann, N. (2012). Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship. Ecology, 87(5), 12441255.
129.Blair, J. M., Seastedt, T. R., Rice, C. W., & Ramundo, R. A. (1998). Terrestrial nutrient cycling in tallgrass prairie. In Grassland dynamics: long-term ecological research (pp. 222243). New York: Oxford University Press.
130.Culman, S. W., Snapp, S. S., Ollenburger, M., Basso, B., & DeHaan, L. R. (2013). Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass. Agronomy Journal, 105(3), 735744.
131.Weißhuhn, P., Reckling, M., Stachow, U., & Wiggering, H. (2017). Supporting agricultural ecosystem services through the integration of perennial polycultures into crop rotations. Sustainability, 9(12), 2267.
132.Cox, C. M., Garrett, K. A., & Bockus, W. W. (2005). Meeting the challenge of disease management in perennial grain cropping systems. Renewable Agriculture and Food Systems, 20(1), 1524.
133.Cunfer, B. M., Buntin, G. D., & Phillips, D. V. (2006). Effect of crop rotation on take-all of wheat in double-cropping systems. Plant Disease, 90(9), 11611166.
134.Reiss, E. R., & Drinkwater, L. E. (2017). Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. Ecological Applications, 28(1), 6277.
135.Zhu, Y. (2000). Genetic diversity and disease control in rice. Nature, 406, 718722.
136.Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N. H., Rice, C. W., Robledo Abad, C., Romanovskaya, A., Sperling, F., & Tubiello, F. (2014). Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 811922). Cambridge and New York: Cambridge University Press. Retrieved from
137.Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Henrik, H. N., Alves, B. J. R., & Morrison, M. J. (2012). Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable Development, 32(2), 329364.
138.Glover, J. D., Culman, S. W., DuPont, S. T., Broussard, W., Young, L., Mangan, M. E., Mai, J. G., Crews, T. E., DeHaan, L. R., Buckley, D. H., Ferris, H., Turner, R. E., Reynolds, H. L., & Wyse, D. L. (2010). Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agriculture, Ecosystems and Environment, 137(1–2), 312.
139.IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp.1132). Cambridge and New York: Cambridge University Press.
140.Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., & Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 32683273.
141.Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B., Martre, P., Ruane, A. C., Wallach, D., Jones, J. W., Rosenzweig, C., Aggarwal, P. K., Alderman, P. D., Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A., Deryng, D., De Sanctis, G., Doltra, J., Fereres, E., Folberth, C., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Kimball, B. A., Koehler, A. K., Kumar, S. N., Nendel, C., O'Leary, G. J., Olesen, J. E., Ottman, M. J., Palosuo, T., Prasad, P. V. V., Priesack, E., Pugh, T. A. M., Reynolds, M., Rezaei, E. E., Rötter, R. P., Schmid, E., Semenov, M. A., Shcherbak, I., Stehfest, E., Stöckle, C. O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P., Waha, K., Wall, G. W., Wang, E., White, J. W., Wolf, J., Zhao, Z., & Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), 11301136.
142.Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287291.
143.Gepts, P. (2004). Selection experiment. Plant Breeding, 24(2), 144.
144.Fu, Y. B. (2015). Understanding crop genetic diversity under modern plant breeding. Theoretical and Applied Genetics, 128(11), 21312142.
145.Vico, G., Manzoni, S., Nkurunziza, L., Murphy, K., & Weih, M. (2016). Trade-offs between seed output and life span – a quantitative comparison of traits between annual and perennial congeneric species. New Phytologist, 209(1), 104114.
146.DeHaan, L. R., Van Tassel, D. L., & Cox, T. S. (2005). Perennial grain crops: a synthesis of ecology and plant breeding. Renewable Agriculture and Food Systems, 20(1), 514.
147.Crews, T. E., & DeHaan, L. R. (2015). The strong perennial vision: a response. Agroecology and Sustainable Food Systems, 39(5), 500515.
148.Milla, R., Morente-Lopez, J., Alonso-Rodrigo, J. M., Martin-Robles, N., & Stuart Chapin, F. (2014). Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 2014142920141429.
149.Stuber, C. W., & Hancock, J. (2008). Sustaining plant breeding–national workshop. Crop Science, 48, 2529.
150.Price, S. C. (1999). Public and private plant breeding. Nature Biotechnology, 17(10), 938938.
151.Curwen-McAdams, C., Arterburn, M., Murphy, K., Cai, X., & Jones, S. S. (2017). Toward a taxonomic definition of perennial wheat: a new species ×Tritipyrum aaseae described. Genetic Resources and Crop Evolution, 64(7), 16511659.
152.Kantar, M. B., Tyl, C. E., Dorn, K. M., Zhang, X., Jungers, J. M., Kaser, J. M., Schendel, R. R., Eckberg, J. O., Runck, B. C., Bunzel, M., Jordan, N. R., Stupar, R. M., Marks, M. D., Anderson, J. A., Johnson, G. A., Sheaffer, C. C., Schoenfuss, T. C., Ismail, B., Heimpel, G. E., & Wyse, D. L. (2016). Perennial grain and oilseed crops. Annual Review of Plant Biology, 67(1), 703729.
153.DeHaan, L. R., Van Tassel, D. L., Anderson, J. A., Asselin, S. R., Barnes, R., Baute, G. J., Cattani, D. J., Culman, S. W., Dorn, K. M., Hulke, B. S., Kantar, M., Larson, S., Marks, M. D., Miller, A. J., Poland, J., Ravetta, D. A., Rude, E., Ryan, M. R., Wyse, D., & Zhang, X. (2016). A pipeline strategy for grain crop domestication. Crop Science, 56(3), 917930.
154.Dawson, J. C., Rivière, P., Berthellot, J.-F., Mercier, F., Kochko, P. de, Galic, N., Pin, S., Serpolay, E., Thomas, M., Giuliano, S., & Goldringer, I. (2011). Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability, 3(8), 12061223.
155.Kucek, L. K., Darby, H., Mallory, E., Dawson, J., Davis, M., Dyck, E., Lazor, J., O'Donnell, S., Mudge, S., Kimball, M., Molloy, T., Benscher, D., Tanaka, J., Cummings, E., & Sorrells, M. E. (2015). Participatory breeding of wheat for organic production. In Proceedings of the Organic Agriculture Research Symposium, LaCrosse, WI (pp. 18). LaCrosse, WI. Retrieved from
156.Najeeb, S., Sheikh, F. A., Parray, G. A., Shikari, A. B., Zaffar, G., Kashyp, S. C., Ganie, M. A., & Shah, A. B. (2018). Farmers’ participatory selection of new rice varieties to boost production under temperate agro-ecosystems. Journal of Integrative Agriculture, 17(6), 13071314.
157.Ceccarelli, S. (2011). Syria – participatory barley breeding – farmers’ input becomes everyone's gain. Retrieved from
158.Mendes-Moreira, P., Satovic, Z., Mendes-Moreira, J., Santos, J. P., Nina Santos, J. P., Pêgo, S., & Vaz Patto, M. C. (2017). Maize participatory breeding in Portugal: Comparison of farmer's and breeder's on-farm selection. Plant Breeding, 136(6), 861871.
159.Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867876.
160.Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 10791087.
161.Cochrane, W. (1958). Farm prices: myth and reality. Minneapolis: University of Minnesota Press.
162.Hoppe, R. A. (2017). America's diverse family farms: 2017 Edition. Washington, D.C., USA. Retrieved from
163.Schipanski, M. E., MacDonald, G. K., Rosenzweig, S. T., Chappell, M. J., Bennett, E. M., Kerr, R. B., Blesh, J., Crews, T. E., Drinkwater, L., Lundgren, J. G., & Schnarr, C. (2016). Realizing resilient food systems. BioScience, 66(7), 600610.
164.Geels, F. W. (2011). The multi-level perspective on sustainability transitions: responses to seven criticisms. Environmental Innovation and Societal Transitions, 1(1), 2440.
165.Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2), 15221.
166.Lohr, L., & Salomonsson, L. (1998). Conversion subsidies for organic production: results from Sweden and lessons for the United States. Agricultural Economics 22, 133146.
167.DeHaan, L. R., & Ismail, B. P. (2017). Perennial cereals provide ecosystem benefits. Cereal Foods World, 62(6), 278281.
168.Fernandez-Cornejo, J., & Schimmelpfennig, D. E. (2004). Have seed industry changes affected research effort? Washington, D.C.: United States Department of Agriculture Economic Research Service. Retrieved from
169.Fuglie, K., Heisey, P., King, J., & Schimmelpfennig, D. (2012). Rising concentration in agricultural input industries influences new farm technologies. Washington, D.C.: United States Department of Agriculture Economic Research Service. Retrieved from
170.Schimmelpfennig, D. E., Pray, C. E., & Brennan, M. F. (2004). The impact of seed industry concentration on innovation: a study of US biotech market leaders. Agricultural Economics, 30(2), 157167.
171.Elliott, K. C. (2013). Selective ignorance and agricultural research. Science Technology and Human Values, 38(3), 328350.
172.Krimsky, S., & Gillam, C. (2018). Roundup litigation discovery documents: implications for public health and journal ethics. Journal of Public Health Policy (Epub ahead of print).
173.McHenry, L. B. (2018). The Monsanto Papers: poisoning the scientific well. International Journal of Risk & Safety in Medicine, 29(3–4), 193205.
174.United States Department of Agriculture (2017). Farm production expenditures, 2016 summary. Washington, D.C.: United States Department of Agriculture. Table 3. U.S. Farm Production Expenses ($ Billions) by Source, 2007–2012F. Retrieved from
175.Willer, H., & Lernoud, J. (2018). The world of organic agriculture. statistics and emerging trends 2018. Bonn: Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM – Organics International. Retrieved from
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Global Sustainability
  • ISSN: -
  • EISSN: 2059-4798
  • URL: /core/journals/global-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed