Skip to main content
×
×
Home

The politics of negative emissions technologies and decarbonization in rural communities

  • Holly Jean Buck (a1) (a2)
Non-technical summary

Technologies and practices to remove carbon from the atmosphere (‘negative emissions technologies’) will be challenging to scale-up. Efforts to incentivize or govern their scale-up globally risk failing if they miss the social challenges. This paper analyzes prospective challenges for negative emissions through examining how decarbonization practices are evolving in one particular landscape: the Imperial Valley in southeast California, a desert landscape engineered for industrial agriculture. Based on semi-structured interviews and site visits, this paper examines how community actors have received, participated in, imagined or contested new energy technologies and climate practices, and draws out takeaways for negative emissions policy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The politics of negative emissions technologies and decarbonization in rural communities
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The politics of negative emissions technologies and decarbonization in rural communities
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The politics of negative emissions technologies and decarbonization in rural communities
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Author for correspondence: H.J. Buck, E-mail: hbuck@ioes.ucla.edu
References
Hide All
1Hickman, L (2016) Timeline: how BECCS became climate change's ‘savior’ technology. Carbon Brief. https://www.carbonbrief.org/beccs-the-story-of-climate-changes-saviour-technology. Accessed 3 April 2018.
2Fuss, S, Canadell, JG, Peters, GP, Tavoni, M, Andrew, RM, Ciais, P, Jackson, RB, Jones, CD, Kraxner, F, Nakicenovic, N, Le Quéré, C, Raupach, MR, Sharifi, A, Smith, P and Yamagata, Y (2014) Betting on negative emissions. Nature Climate Change 4, 850853.
3Boysen, LR, Lucht, W, Gerten, D, Heck, V, Lenton, TM and Schellnhuber, HJ (2017) The limits to global-warming mitigation by terrestrial carbon removal, Earth's Future 5, 112.
4Heck, VD, Gerten, D, Lucht, W and Boysen, LR (2016) Is extensive terrestrial carbon dioxide removal a “green” form of geoengineering? A global modelling study. Global and Planetary Change 137, 123130.
5Buck, HJ (2016) Rapid scale up of negative emissions technologies: social barriers and social implications. Climatic Change 139, 155167.
6Peters, G and Geden, O (2017) Catalysing a political shift from low to negative carbon. Nature Climate Change 7, 619621.
7Sanchez, D, Amador, G, Funk, J and Mach, K (2018) Federal research, development, and demonstration priorities for carbon dioxide removal in the United States. Environmental Research Letters 13, 015005.
8Hunsberger, C, Corbera, E, Borras, SM Jr, Franco, JC, Woods, K, Work, C, de la Rosa, R, Eang, V, Herre, R, Kham, SS, Park, C, Sokheng, S, Spoor, M, Thein, S, Aung, KT, Thuon, R and Vaddhanaphuti, C (2017) Climate change mitigation, land grabbing and conflict: towards a landscape-based and collaborative action research agenda. Canadian Journal of Development Studies/Revue canadienne d’études du développement 38, 305324.
9Harvey, CA, Chacón, M, Donatti, CI, Garen, E, Hannah, L, Andrade, A, Bede, L, Brown, D, Calle, A, Chará, J, Clement, C, Gray, E, Hoang, MH, Minang, P, Rodríguez, AM, Seeberg-Elverfeldt, C, Semroc, B, Shames, S, Smulker, S, Somarriba, E, Torquebiau, E, van Etten, J and Wollenberg, E (2014) Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters 7, 7790.
10Bridge, G, Bouzarovski, S, Bradshaw, M and Eyre, N (2013) Geographies of energy transition: space, place and the low-carbon economy. Energy Policy 53, 331340.
11Fairhead, J, Leach, M and Scoones, I (2012) Green Grabbing: a new appropriation of nature? Journal of Peasant Studies 39, 237261.
12Moore, S and Hackett, EJ (2016) The construction of technology and place: concentrating solar power conflicts in the United States. Energy Research & Social Science 11, 6778.
13Rip, A and Kemp, R (1998) Technological Change. Human Choice and Climate Change (eds Rayner, S and Malone, EL), pp. 327–99. Columbus, OH, USA: Battelle Press.
14Geels, F and Schot, S (2007) Typology of sociotechnical transition pathways. Research Policy 36, 399417.
15Miller, B (2017) Energy Nexus primes Valley to be World's Renewable Energy Capital. The Desert Review, 20 March. http://www.mydesertreviewarchives.com/energy-nexus-primes-valley-to-be-worlds-renewable-energy-capital/
16Li, S (2013) Imperial County betting its future on renewable energy. Los Angeles Times, 27 February 2013. http://articles.latimes.com/2013/feb/27/business/la-fi-imperial-energy-20130227. Accessed 3 April 2018.
17National University System Institute for Policy Research (NUSIPR) (2016). The Economic Effects of the Renewable Energy Sector in Imperial County. Policy brief, March 2016. http://www.nusinstitute.org/assets/resources/pageResources/NUSIPR_Imperial_Renewable.pdf. Accessed 5 April 2018.
18Marlon, J, Howe, P, Mildenberge, M and Leiserowitz, A (2016) Yale climate opinion maps – US 2016. http://climatecommunication.yale.edu/visualizations-data/ycom-us-2016/. Accessed 3 April 2018.
19Downey, C and Clinkenbeard, J (2006) An Overview of Geologic Carbon Sequestration Potential in California. California Energy Commission, PIER Energy-Related Environmental Research. CEC-500-2006-088. www.energy.ca.gov/2006publications/CEC-500-2006-088/CEC-500-2006-088.PDF. Accessed 5 April 2018.
20Baik, E, Sanchez, DL, Turner, PA, Mach, KJ, Field, CB and Benson, SM(2018) Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States. Proceeding of the National Academy of Sciences of the United States of America 115, 32903295
21Rubenstein, D (2017) California Ethanol and Power, LLC. Presentation at the Imperial Valley Renewable Energy Summit, March 2017. http://ivres.ivedc.com/media/managed/2017ivres/5_IVRES_2017_David_Rubenstein.pdf. Accessed 5 April 2018.
22Dale, B (2017) A sober view of the difficulties in scaling cellulosic biofuels. Biofuels, Bioproducts and Biorefining 11, 57.
23McCullough, M (2016) How Carbon Engineering plans to make a fortune out of thin air. Canadian Business. http://www.canadianbusiness.com/lists-and-rankings/most-innovative-companies/carbon-engineering/. Accessed 3 April 2018.
24Imperial County Farm Bureau (2016) Farmer Jack Vessey presents last cantaloupes harvested from a field now proposed for solar production to Imperial County Board of Supervisors. https://www.facebook.com/icfarmbureau/videos/. Accessed 12 July 2017.
25Tejada, L and Rist, S (2017) Seeing land deals through the lens of the ‘land–water nexus’: the case of biofuel production in Piura, Peru. Journal of Peasant Studies doi:10.1080/03066150.2016.1259220.
26Borras, S, Fig, D and Suárez, SM (2011) The politics of agrofuels and mega-land and water deals: insights from the ProCana case, Mozambique. Review of African Political Economy 38, 215234.
27Johannsen, E, Fader, M, Seaquist, J and Nicholas, A (2016) Green and blue water demand from large-scale land acquisitions in Africa. Proceeding of the National Academy of Sciences of the United States of America 113, 1147111476.
28Hawken, P (2017) Drawdown: The most comprehensive plan ever proposed to reverse global warming. New York, NY, USA: Penguin Books.
29Geden, O (2016) The Paris Agreement and the inherent inconsistency of climate policymaking. WIREs Climate Change 7, 790797.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Global Sustainability
  • ISSN: -
  • EISSN: 2059-4798
  • URL: /core/journals/global-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Buck supplementary material
Buck supplementary material 1

 Word (15 KB)
15 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 13
Total number of PDF views: 138 *
Loading metrics...

Abstract views

Total abstract views: 306 *
Loading metrics...

* Views captured on Cambridge Core between 29th May 2018 - 25th June 2018. This data will be updated every 24 hours.