Skip to main content

An Evaluation of Food as a Potential Source for Clostridium difficile Acquisition in Hospitalized Patients

  • Jennie H. Kwon (a1), Cristina Lanzas (a2), Kimberly A. Reske (a1), Tiffany Hink (a1), Sondra M. Seiler (a1), Kerry M. Bommarito (a1), Carey-Ann D. Burnham (a3) and Erik R. Dubberke (a1)...
  • Please note a correction has been issued for this article.

To determine whether Clostridium difficile is present in the food of hospitalized patients and to estimate the risk of subsequent colonization associated with C. difficile in food.


This was a prospective cohort study of inpatients at a university-affiliated tertiary care center, May 9, 2011–July 12, 2012. Enrolled patients submitted a portion of food from each meal. Patient stool specimens and/or rectal swabs were collected at enrollment, every 3 days thereafter, and at discharge, and were cultured for C. difficile. Clinical data were reviewed for evidence of infection due to C. difficile. A stochastic, discrete event model was developed to predict exposure to C. difficile from food, and the estimated number of new colonization events from food exposures per 1,000 admissions was determined.


A total of 149 patients were enrolled and 910 food specimens were obtained. Two food specimens from 2 patients were positive for C. difficile (0.2% of food samples; 1.3% of patients). Neither of the 2 patients was colonized at baseline with C. difficile. Discharge colonization status was available for 1 of the 2 patients and was negative. Neither was diagnosed with C. difficile infection while hospitalized or during the year before or after study enrollment. Stochastic modeling indicated contaminated hospital food would be responsible for less than 1 newly colonized patient per 1,000 hospital admissions.


The recovery of C. difficile from the food of hospitalized patients was rare. Modeling suggests hospital food is unlikely to be a source of C. difficile acquisition.

Infect Control Hosp Epidemiol 2016;1401–1407

Corresponding author
Address correspondence to Jennie H. Kwon, MSCI, Washington University School of Medicine, Division of Infectious Diseases, 660 S Euclid Ave, Campus Box 8051, St. Louis, MO 63110 (
Hide All
1. Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, 2013. CDC website. Published 2014. Accessed January 9, 2016.
2. Lessa, FC, Mu, Y, Bamberg, WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 2015;372:825834.
3. Kwon, JH, Olsen, MA, Dubberke, ER. The morbidity, mortality, and costs associated with Clostridium difficile infection. Infect Dis Clin North Am 2015;29:123134.
4. Walker, AS, Eyre, DW, Wyllie, DH, et al. Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLOS Med 2012;9:e1001172.
5. Grundmann, H, Barwolff, S, Tami, A, et al. How many infections are caused by patient-to-patient transmission in intensive care units? Crit Care Med 2005;33:946951.
6. Bakri, MM, Brown, DJ, Butcher, JP, Sutherland, AD. Clostridium difficile in ready-to-eat salads, Scotland. Emerg Infect Dis 2009;15:817818.
7. Eckert, C, Burghoffer, B, Barbut, F. Contamination of ready-to-eat raw vegetables with Clostridium difficile in France. J Med Microbiol 2013;62:14351438.
8. Gould, LH, Limbago, B. Clostridium difficile in food and domestic animals: a new foodborne pathogen? Clin Infect Dis 2010;51:577582.
9. Jobstl, M, Heuberger, S, Indra, A, Nepf, R, Kofer, J, Wagner, M. Clostridium difficile in raw products of animal origin. Int J Food Microbiol 2010;138:172175.
10. Lund, BM, Peck, MW. A possible route for foodborne transmission of Clostridium difficile? Foodborne Pathog Dis 2015;12:177182.
11. Rodriguez-Palacios, A, Staempfli, HR, Duffield, T, Weese, JS. Clostridium difficile in retail ground meat, Canada. Emerg Infect Dis 2007;13:485487.
12. Rodriguez-Palacios, A, Reid-Smith, RJ, Staempfli, HR, et al. Possible seasonality of Clostridium difficile in retail meat, Canada. Emerg Infect Dis 2009;15:802805.
13. Rodriguez, C, Korsak, N, Taminiau, B, et al. Clostridium difficile from food and surface samples in a Belgian nursing home: an unlikely source of contamination. Anaerobe 2015;32:8789.
14. Songer, JG, Trinh, HT, Killgore, GE, Thompson, AD, McDonald, LC, Limbago, BM. Clostridium difficile in retail meat products, USA, 2007. Emerg Infect Dis 2009;15:819821.
15. Von Abercron, SM, Karlsson, F, Wigh, GT, Wierup, M, Krovacek, K. Low occurrence of Clostridium difficile in retail ground meat in Sweden. J Food Prot 2009;72:17321734.
16. Weese, JS, Avery, BP, Rousseau, J, Reid-Smith, RJ. Detection and enumeration of Clostridium difficile spores in retail beef and pork. Appl Environ Microbiol 2009;75:50095011.
17. Weese, JS, Reid-Smith, RJ, Avery, BP, Rousseau, J. Detection and characterization of Clostridium difficile in retail chicken. Lett Appl Microbiol 2010;50:362365.
18. Alasmari, F, Seiler, SM, Hink, T, Burnham, CA, Dubberke, ER. Prevalence and risk factors for asymptomatic Clostridium difficile carriage. Clin Infect Dis 2014;59:216222.
19. Dubberke, ER, Reske, KA, Seiler, S, Hink, T, Kwon, JH, Burnham, CA. Risk factors for acquisition and loss of C. difficile colonization in hospitalized patients. Antimicrob Agents Chemother 2015;59:45334543.
20. Hink, T, Burnham, CA, Dubberke, ER. A systematic evaluation of methods to optimize culture-based recovery of Clostridium difficile from stool specimens. Anaerobe 2013;19:3943.
21. McFarland, LV, Coyle, MB, Kremer, WH, Stamm, WE. Rectal swab cultures for Clostridium difficile surveillance studies. J Clin Microbiol 1987;25:22412242.
22. Kundrapu, S, Sunkesula, VC, Jury, LA, Sethi, AK, Donskey, CJ. Utility of perirectal swab specimens for diagnosis of Clostridium difficile infection. Clin Infect Dis 2012;55:15271530.
23. Westblade, LF, Chamberland, RR, Maccannell, D, et al. Development and evaluation of a novel, semiautomated Clostridium difficile typing platform. J Clin Microbiol 2013;51:621624.
24. Delignette-Muller, ML, Dutang, C. fitdistrplus: an R package for fitting distributions. J Stat Softw 2015;64.
25. Gonzales-Barron, U, Butler, F. A comparison between the discrete Poisson-gamma and Poisson-lognormal distributions to characterise microbial counts in foods. Food Control 2011;22:12791286.
26. Villano, SA, Seiberling, M, Tatarowicz, W, Monnot-Chase, E, Gerding, DN. Evaluation of an oral suspension of VP20621, spores of nontoxigenic Clostridium difficile strain M3, in healthy subjects. Antimicrob Agents Chemother 2012;56:52245229.
27. Hosmer, DW, Lemeshow, S, Sturdivant, RX. Applied Logistic Regression. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2013.
28. Halekoh, U, Hojsgaard, S, Yan, J. The R package geepack for generalized estimating equations. J Stat Softw 2016;15.
29. Lanzas, C, Dubberke, ER. Effectiveness of screening hospital admissions to detect asymptomatic carriers of Clostridium difficile: a modeling evaluation. Infect Control Hosp Epidemiol 2014;35:10431050.
30. Fekety, R, Kim, KH, Brown, D, Batts, DH, Cudmore, M, Silva, J Jr. Epidemiology of antibiotic-associated colitis; isolation of Clostridium difficile from the hospital environment. Am J Med 1981;70:906908.
31. McFarland, LV, Mulligan, ME, Kwok, RY, Stamm, WE. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med 1989;320:204210.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 27
Total number of PDF views: 229 *
Loading metrics...

Abstract views

Total abstract views: 1059 *
Loading metrics...

* Views captured on Cambridge Core between 3rd October 2016 - 17th August 2018. This data will be updated every 24 hours.