Skip to main content

Clinical Risk Score for Prediction of Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae in Bloodstream Isolates

  • Matthew R. Augustine (a1), Traci L. Testerman (a2), Julie Ann Justo (a3) (a4), P. Brandon Bookstaver (a3) (a4), Joseph Kohn (a4), Helmut Albrecht (a1) (a5) and Majdi N. Al-Hasan (a1) (a5)...

To develop a risk score to predict probability of bloodstream infections (BSIs) due to extended-spectrum β-lactamase–producing Enterobacteriaceae (ESBLE).


Retrospective case-control study.


Two large community hospitals.


Hospitalized adults with Enterobacteriaceae BSI between January 1, 2010, and June 30, 2015.


Multivariate logistic regression was used to identify independent risk factors for ESBLE BSI. Point allocation in extended-spectrum β-lactamase prediction score (ESBL-PS) was based on regression coefficients.


Among 910 patients with Enterobacteriaceae BSI, 42 (4.6%) had ESBLE bloodstream isolates. Most ESBLE BSIs were community onset (33 of 42; 79%), and 25 (60%) were due to Escherichia coli. Independent risk factors for ESBLE BSI and point allocation in ESBL-PS included outpatient procedures within 1 month (adjusted odds ratio [aOR], 8.7; 95% confidence interval [CI], 3.1–22.9; 1 point), prior infections or colonization with ESBLE within 12 months (aOR, 26.8; 95% CI, 7.0–108.2; 4 points), and number of prior courses of β-lactams and/or fluoroquinolones used within 3 months of BSI: 1 course (aOR, 6.3; 95% CI, 2.7–14.7; 1 point), ≥2 courses (aOR, 22.0; 95% CI, 8.6–57.1; 3 points). The area under the receiver operating characteristic curve for the ESBL-PS model was 0.86. Patients with ESBL-PSs of 0, 1, 3, and 4 had estimated probabilities of ESBLE BSI of 0.7%, 5%, 24%, and 44%, respectively. Using ESBL-PS ≥3 to indicate high risk provided a negative predictive value of 97%.


ESBL-PS estimated patient-specific risk of ESBLE BSI with high discrimination. Incorporation of ESBL-PS with acute severity of illness may improve adequacy of empirical antimicrobial therapy and reduce carbapenem utilization.

Infect Control Hosp Epidemiol 2017;38:266–272

Corresponding author
Address correspondence to Majdi N. Al-Hasan, MBBS, Associate Professor of Medicine, University of South Carolina School of Medicine, 2 Medical Park, Suite 502, Columbia, SC 29203 (
Hide All

PREVIOUS PRESENTATION: The preliminary results of this study were presented in part at the American Society for Microbiology Microbe conference on June 20, 2016, in Boston, Massachusetts (Abstract no. MO-127).

Hide All
1. Goto, M, Al-Hasan, MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect 2013;19:501509.
2. Uslan, DZ, Crane, SJ, Steckelberg, JM, et al. Age-and sex-associated trends in bloodstream infection. Arch Intern Med 2007;167:834839.
3. Jacoby, GA. Extended-spectrum beta-lactamases and other enzymes providing resistance to oxyimino-beta-lactams. Infect Dis Clin North Am 1997;11:875887.
4. Paterson, DL, Bonomo, RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657686.
5. Thaden, JT, Fowler, VG, Sexton, DJ, Anderson, DJ. Increasing incidence of extended-spectrum β-lactamase-producing Escherichia coli in community hospitals throughout the southeastern United States. Infect Control Hosp Epidemiol 2016;37:4954.
6. Kassakian, SZ, Mermel, LA. Changing epidemiology of infections due to extended spectrum beta-lactamase producing bacteria. Antimicrob Resist Infect Control 2014;3:9.
7. Tamma, PD, Han, JH, Rock, C, et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum β-lactamase bacteremia. Clin Infect Dis 2015;60:13191325.
8. Orsi, GB, Bencardino, A, Vena, A, et al. Patient risk factors for outer membrane permeability and KPC-producing carbapenem-resistant Klebsiella pneumoniae isolation: results of a double case-control study. Infection 2013;41:6167.
9. Retamar, P, Portillo, MM, López-Prieto, MD, et al. Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: a propensity score-based analysis. Antimicrob Agents Chemother 2012;56:472478.
10. Cain, SE, Kohn, J, Bookstaver, PB, Albrecht, H, Al-Hasan, MN. Stratification of the impact of inappropriate empirical antimicrobial therapy for gram-negative bloodstream infections by predicted prognosis. Antimicrob Agents Chemother 2015;59:245250.
11. Friedman, ND, Kaye, KS, Stout, JE, et al. Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 2002;137:791797.
12. Dan, S, Shah, A, Justo, JA, et al. Prediction of fluoroquinolone resistance in Gram-negative bacteria causing bloodstream infections. Antimicrob Agents Chemother 2016;60:22652272.
13. Hammer, KL, Stoessel, A, Justo, JA, et al. Association between chronic hemodialysis and bloodstream infections due to chromosomally-mediated AmpC-producing Enterobacteriaceae. Am J Infect Control 2016. doi: 10.1016/j.ajic.2016.05.017 [Epub ahead of print].
14. Tumbarello, M, Trecarichi, EM, Bassetti, M, et al. Identifying patients harboring extended-spectrum-β-lactamase-producing Enterobacteriaceae on hospital admission: derivation and validation of a scoring system. Antimicrob Aagents Chemother 2011;55:34853490.
15. Rottier, WC, Bamberg, YR, Dorigo-Zetsma, JW, van der Linden, PD, Ammerlaan, HS, Bonten, MJ. The predictive value of prior colonization and antibiotic use for 3rd generation cephalosporin resistant Enterobacteriaceae bacteremia in patients with sepsis. Clin Infect Dis 2015;60:16221630.
16. Ben-Ami, R, Rodríguez-Baño, J, Arslan, H, et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing Enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 2009;49:682690.
17. Williamson, DA, Roberts, SA, Paterson, DL, et al. Escherichia coli bloodstream infection after transrectal ultrasound-guided prostate biopsy: implications of fluoroquinolone-resistant sequence type 131 as a major causative pathogen. Clin Infect Dis 2012;54:14061412.
18. Epstein, L, Hunter, JC, Arwady, MA, et al. New Delhi metallo-β-lactamase-producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA 2014;312:14471455.
19. Patterson, DL, Ko, WC, Von Gottberg, A, Mohapatra, S, Casellas, JM. International prospective study of Klebsiella pneumoniae bacteraemia: implications of extended-spectrum β-lactamase production in nosocomial infections. Ann Intern Med 2004;140:2632.
20. Al-Hasan, MN, Lahr, BD, Eckel-Passow, JE, Baddour, LM. Predictive scoring model of mortality in gram-negative bloodstream infection. Clin Microbiol Infect 2013;19:948954.
21. Al-Hasan, MN, Juhn, YJ, Bang, DW, Yang, HJ, Baddour, LM. External validation of gram-negative bloodstream infection mortality risk score in a population-based cohort. Clin Microbiol Infect 2014;20:886891.
22. Knothe, H, Shah, P, Krcmery, V, Antal, M, Mitsuhashi, S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983;11:315317.
23. Rodríguez-Baño, J, Navarro, MD, Romero, L, et al. Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol 2004;42:10891094.
24. Pitout, JD, Hanson, ND, Church, DL, Laupland, KB. Population-based laboratory surveillance for Escherichia coli–producing extended-spectrum beta-lactamases: importance of community isolates with blaCTX-M genes. Clin Infect Dis 2004;38:17361741.
25. Courpon-Claudinon, A, Lefort, A, Panhard, X, Clermont, O, Dornic, Q, Fantin, B, et al. Bacteraemia caused by third-generation cephalosporin-resistant Escherichia coli in France: prevalence, molecular epidemiology and clinical features. Clin Microbiol Infect 2011;17:557565.
26. Nicolas-Chanoine, MH, Bertrand, X, Madec, JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014;27:543574.
27. Banerjee, R, Johnston, B, Lohse, C, et al. The clonal distribution and diversity of extraintestinal Escherichia coli isolates vary according to patient characteristics. Antimicrob Agents Chemother 2013;57:59125917.
28. Hayakawa, K, Gattu, S, Marchaim, D, et al. Epidemiology and risk factors for isolation of Escherichia coli–producing CTX-M-type extended-spectrum β-lactamase in a large US Medical Center. Antimicrob Agents Chemother 2013;57:40104018.
29. Chen, LF, Freeman, JT, Nicholson, B, et al. Widespread dissemination of CTX-M-15 genotype extended-spectrum-β-lactamase-producing Enterobacteriaceae among patients presenting to community hospitals in the southeastern United States. Antimicrob Agents Chemother 2014;58:12001202.
30. Meeker, D, Linder, JA, Fox, CR, et al. Effect of behavioral interventions on inappropriate antibiotic prescribing among primary care practices: a randomized clinical trial. JAMA 2016;315:562570.
31. Kutob, LF, Justo, JA, Bookstaver, PB, Kohn, J, Albrecht, H, Al-Hasan, MN. Effectiveness of oral antibiotics for definitive therapy of gram-negative bloodstream infections. Int J Antimicrob Agents 2016;48:498–503.
32. Goodman, KE, Lessler, J, Cosgrove, SE, et al. A clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum β-lactamase-producing organism. Clin Infect Dis 2016;63:896903.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Augustine supplementary material
Figure S1

 Unknown (20 KB)
20 KB
Supplementary materials

Augustine supplementary material
Figure S2

 Unknown (42 KB)
42 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed