Skip to main content Accessibility help

Long-Term Impact of Universal Contact Precautions on Rates of Multidrug-Resistant Organisms in ICUs: A Comparative Effectiveness Study

  • E. Yoko Furuya (a1) (a2), Bevin Cohen (a3) (a4), Haomiao Jia (a3) (a5) and Elaine L. Larson (a3) (a4)

To evaluate the impact of universal contact precautions (UCP) on rates of multidrug-resistant organisms (MDROs) in intensive care units (ICUs) over 9 years


Retrospective, nonrandomized observational study


An 800-bed adult academic medical center in New York City


All patients admitted to 6 ICUs, 3 of which instituted UCP in 2007


Using a comparative effectiveness approach, we studied the longitudinal impact of UCP on MDRO incidence density rates, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and carbapenem-resistant Klebsiella pneumoniae. Data were extracted from a clinical research database for 2006–2014. Monthly MDRO rates were compared between the baseline period and the UCP period, utilizing time series analyses based on generalized linear models. The same models were also used to compare MDRO rates in the 3 UCP units to 3 ICUs without UCPs.


Overall, MDRO rates decreased over time, but there was no significant decrease in the trend (slope) during the UCP period compared to the baseline period for any of the 3 intervention units. Furthermore, there was no significant difference between UCP units (6.6% decrease in MDRO rates per year) and non-UCP units (6.0% decrease per year; P=.840).


The results of this 9-year study suggest that decreases in MDROs, including multidrug-resistant gram-negative bacilli, were more likely due to hospital-wide improvements in infection prevention during this period and that UCP had no detectable additional impact.

Infect Control Hosp Epidemiol 2018;39:534–540

Corresponding author
Address correspondence to E. Yoko Furuya, MD, MS, 622 W 168th St, PH-8W #876, New York, NY 10032 (
Hide All
1. Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 2013;34:114.
2. Neidell, MJ, Cohen, B, Furuya, Y, et al. Costs of healthcare- and community-associated infections with antimicrobial-resistant versus antimicrobial-susceptible organisms. Clin Infect Dis 2012;55:807815.
3. Yokoe, DS, Mermel, LA, Anderson, DJ, et al. A compendium of strategies to prevent healthcare-associated infections in acute care hospitals. Infect Control Hosp Epidemiol 2008;29(Suppl 1):S12S21.
4. Harris, AD, Furuno, JP, Roghmann, MC, et al. Targeted surveillance of methicillin-resistant Staphylococcus aureus and its potential use to guide empiric antibiotic therapy. Antimicrob Agents Chemother 2010;54:31433148.
5. Chassin, MR, Mayer, C, Nether, K. Improving hand hygiene at eight hospitals in the United States by targeting specific causes of noncompliance. Jt Comm J Qual Patient Saf 2015;41:412.
6. Huskins, WC, Huckabee, CM, O’Grady, NP, et al. Intervention to reduce transmission of resistant bacteria in intensive care. New Eng J Med 2011;364:14071418.
7. Harris, AD, Pineles, L, Belton, B, et al. Universal gown and glove use and acquisition of antibiotic-resistant bacteria in the ICU: a randomized trial. JAMA 2013;310:15711580.
8. Apte, M, Neidell, M, Furuya, EY, et al. Using electronically available inpatient hospital data for research. Clin Transl Sci 2011;4:338345.
9. Multidrug-resistant organism and Clostridium difficile infection (MDRO/CDI) module. Centers for Disease Control and Prevention website. Published January 2017. Accessed August 15, 2017.
10. Li, WK. Time series models based on generalized linear models: some further results. Biometrics 1994;50:506511.
11. Kullar, R, Vassallo, A, Turkel, S, Chopra, T, Kaye, KS, Dhar, S. Degowning the controversies of contact precautions for methicillin-resistant Staphylococcus aureus: a review. Am J Infect Contr 2016;44:97103.
12. Ho, AL, Chambers, R, Malic, C, Papp, A. Universal contact precautions do not change the prevalence of antibiotic resistant organisms in a tertiary burn center. Burns 2017;43:265272.
13. Harris, AD, Morgan, DJ, Pineles, L, Perencevich, EN, Barnes, SL. Deconstructing the relative benefits of a universal glove and gown intervention on MRSA acquisition. J Hosp Infect 2017;96:4953.
14. Martin, EM, Russell, D, Rubin, Z, et al. Elimination of routine contact precautions for endemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus: a retrospective quasi-experimental study. Infect Contr Hosp Epidemiol 2016;37:13231330.
15. Park, SO, Liu, J, Furuya, EY, Larson, EL. Carbapenem-resistant Klebsiella pneumoniae infection in three New York City hospitals trended downwards from 2006 to 2014. Open Foreum . Infect Dis 2016;3:ofw222.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed