Skip to main content
×
Home
    • Aa
    • Aa

Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus (MRSA) among Patients Admitted to Adult Intensive Care Units: The STAR*ICU Trial

  • Nisha Nair (a1) (a2), Ekaterina Kourbatova (a1), Katharine Poole (a3), Charmaine M. Huckabee (a3), Patrick Murray (a4), W. Charles Huskins (a5) and Henry M. Blumberg (a1) (a2) (a6)...
Abstract
Background.

The multicenter, cluster-randomized Strategies to Reduce Transmission of Antimicrobial Resistant Bacteria in Intensive Care Units (STAR*ICU) trial was performed in 18 U.S. adult intensive care units (ICUs). It evaluated the effectiveness of infection control strategies to reduce the transmission of methicillin-resistant Staphylococcus aureus (MRSA) colonization and/or infection. Our study objective was to examine the molecular epidemiology of MRSA and assess the prevalence and risk factors for community acquired (CA)-MRSA genotype nasal carriage at the time of ICU admission.

Methods.

Selected MRSA isolates were subjected to molecular typing using pulsed-field gel electrophoresis.

Results.

Of 5,512 ICU patient admissions in the STAR*ICU trial during the intervention period, 626 (11%) had a nares sample culture result that was positive for MRSA. A total of 210 (34%) of 626 available isolates were selected for molecular typing by weighted random sampling. Of 210 patients, 123 (59%) were male; mean age was 63 years. Molecular typing revealed that 147 isolates (70%) were the USAIOO clone, 26 (12%) were USA300, 12 (6%) were USA500, 8 (4%) were USA800, and 17 (8%) were other MRSA genotypes. In a multivariate analysis, patients who were colonized with a CA-MRSA genotype (USA300, USA400, or USA1000) were less likely to have been hospitalized during the previous 12 months (PR [prevalence ratio], 0.39 [95% confidence interval (CI), 0.21-0.73]) and were less likely to be older (PR, 0.97 [95% CI, 0.95-0.98] per year) compared with patients who were colonized with a healthcare-associated (HA)-MRSA genotype.

Conclusion.

CA-MRSA genotypes have emerged as a cause of MRSA nares colonization among patients admitted to adult ICUs in the United States. During the study period (2006), the predominant site of CA-MRSA genotype acquisition appeared to be in the community.

Copyright
Corresponding author
Division of Infectious Diseases, Emory University School of Medicine, 49 Jesse Hill Jr. Drive, Atlanta, GA30303 (henry.m.blumberg@emory.edu)
References
Hide All
1.Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2008;46(suppl 5): S344S349.
2.National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 2004;32(8):470485.
3.Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339(8):520532.
4.Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 2003;36(1): 5359.
5.Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 2005;26(2): 166174.
6.Engemann JJ, Carmeli Y, Cosgrove SE, et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis 2003;36(5):592598.
7.King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 2006;144(5):309317.
8.Klevens RM, Morrison MA, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007;298(15):17631771.
9.Moran GJ, Krishnadasan A, Gorwitz RJ, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 2006;355(7):666674.
10.Methicillin-resistant Staphylococcus aureus infections among competitive sports participants: Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000-2003. MMWR Morb Mortal Wkly Rep 2003;52(33):793795.
11.Begier EM, Frenette K, Barrett NL, et al. A high-morbidity outbreak of methicillin-resistant Staphylococcus aureus among players on a college football team, facilitated by cosmetic body shaving and turf burns. Clin Infect Dis 2004;39(10):14461453.
12.Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections: Los Angeles County, California, 2002-2003. MMWR Morb Mortal Wkly Rep 2003;52(5):88.
13.Diep BA, Chambers HF, Graber CJ, et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med 2008;148(4):249257.
14.Adcock PM, Pastor P, Medley F, Patterson JE, Murphy TV. Methicillin-resistant Staphylococcus aureus in two child care centers. J Infect Dis 1998;178(2):577580.
15.Herold BC, Immergluck LC, Maranan MC, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 1998;279(8): 593598.
16.Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol 2008;8(6):747763.
17.McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 2003;41 (11):51135120.
18.Boyle-Vavra S, Ereshefsky B, Wang CC, Daum RS. Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. J Clin Microbiol 2005; 43(9):47194730.
19.Johnson AP, Aucken HM, Cavendish S, et al. Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J Antimicrob Chemother 2001;48(1):143144.
20.Vandenesch F, Naimi T, Enright MC, et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 2003;9(8):978984.
21.Huskins WC, Huckabee CM, O'Grady NP, et al. Intervention to reduce transmission of resistant bacteria in intensive care. N Engl J Med 2011;364:14071418.
22.Seybold U, Kourbatova EV, Johnson JG, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis 2006;42(5):647656.
23.Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 2005;5(5):275286.
24.Kourbatova EV, Halvosa JS, King MD, Ray SM, White N, Blumberg HM. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA 300 clone as a cause of health care-associated infections among patients with prosthetic joint infections. Am J Infect Control 2005;33(7):385391.
25.Otter JA, French GL. Nosocomial transmission of community-associated methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 2006;6(12):753755.
26.Patel M, Kumar RA, Stamm AM, Hoesley CJ, Moser SA, Waites KB. USA300 genotype community-associated methicillin-resistant Staphylococcus aureus as a cause of surgical site infections. J Clin Microbiol 2007;45(10):34313433.
27.Said-Salim B, Mathema B, Kreiswirth BN. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen. Infect Control Hosp Epidemiol 2003;24(6):451455.
28.Corbella X, Dominguez MA, Pujol M, et al. Staphylococcus aureus nasal carriage as a marker for subsequent staphylococcal infections in intensive care unit patients. Eur J Clin Microbiol Infect Dis 1997;16(5):351357.
29.Seybold U, Halvosa JS, White N, Voris V, Ray SM, Blumberg HM. Emergence of and risk factors for methicillin-resistant Staphylococcus aureus of community origin in intensive care nurseries. Pediatrics 2008;122(5):10391046.
30.Bleasdale SC, Trick WE, Gonzalez IM, Lyles RD, Hayden MK, Weinstein RA. Effectiveness of Chlorhexidine bathing to reduce catheter-associated bloodstream infections in medical intensive care unit patients. Arch Intern Med 2007;167(19):20732079.
31.Como-Sabetti K, Harriman KH, Buck JM, Glennen A, Boxrud DJ, Lynfield R. Community-associated methicillin-resistant Staphylococcus aureus: trends in case and isolate characteristics from six years of prospective surveillance. Public Health Rep 2009;124(3):427435.
32.Johnson AP, Pearson A, Duckworth G. Surveillance and epidemiology of MRSA bacteraemia in the UK. J Antimicrob Chemother 2005;56(3):455462.
33.Da Silva Coimbra MV, Teixeira LA, Ramos RL, et al. Spread of the Brazilian epidemic clone of a multiresistant MRSA in two cities in Argentina. J Med Microbiol 2000;49(2):187192.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 184 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.