Skip to main content Accessibility help
×
Home

Potential Role of Active Surveillance in the Control of a Hospital-Wide Outbreak of Carbapenem-Resistant Klebsiella pneumoniae Infection

  • Debby Ben-David (a1), Yasmin Maor (a1), Nathan Keller (a1), Gili Regev-Yochay (a1), Ilana Tal (a1), Dalit Shachar (a1), Amir Zlotkin (a1), Gill Smollan (a1) and Galia Rahav (a1)...

Extract

Background.

The recent emergence of carbapenem resistance among Enterobacteriaceae is a major threat for hospitalized patients, and effective strategies are needed.

Objective.

To assess the effect of an intensified intervention, which included active surveillance, on the incidence of infection with carbapenem-resistant Klebsiella pneumoniae.

Setting.

Sheba Medical Center, a 1,600-bed tertiary care teaching hospital in Tel Hashomer, Israel.

Design.

Quasi-experimental study.

Methods.

The medical records of all the patients who acquired a carbapenem-resistant K. pneumoniae infection during 2006 were reviewed. An intensified intervention was initiated in May 2007. In addition to contact precautions, active surveillance was initiated in high-risk units. The incidence of clinical carbapenem-resistant K. pneumoniae infection over time was measured, and interrupted time-series analysis was performed.

Results.

The incidence of clinical carbapenem-resistant K. pneumoniae infection increased 6.42-fold from the first quarter of 2006 up to the initiation of the intervention. In 2006, of the 120 patients whose clinical microbiologic culture results were positive for carbapenem-resistant K. pneumoniae, 67 (56%) developed a nosocomial infection. During the intervention period, the rate of carbapenem-resistant K. pneumoniae rectal colonization was 9%. Of the 390 patients with carbapenem-resistant K. pneumoniae colonization or infection, 204 (52%) were identified by screening cultures. There were a total of 12,391 days of contact precautions, and of these, 4,713 (38%) were added as a result of active surveillance. After initiation of infection control measures, we observed a significant decrease in the incidence of carbapenem-resistant K. pneumoniae infection.

Conclusions.

The use of active surveillance and contact precautions, as part of a multifactorial intervention, may be an effective strategy to decrease rates of nosocomial transmission of carbapenem-resistant K. pneumoniae colonization or infection.

Copyright

Corresponding author

Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 52621, Israel (Debby.BenDavid@ sheba.health.gov.il)

References

Hide All
1.Yigit, H, Queenan, AM, Anderson, GJ, et al.Novel carbapenem-hydro-lyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001;45:11511161.
2.Bradford, PA, Bratu, S, Urban, C, et al.Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin Infect Dis 2004;39:5560.
3.Samra, Z, Ofir, O, Lishtzinsky, Y, Madar-Shapiro, L, Bishara, J. Outbreak of carbapenem-resistant Klebsiella pneumoniae producing KPC-3 in a tertiary medical centre in Israel. Int J Antimicrob Agents 2007;30:525529.
4.Bratu, S, Landman, D, Haag, R, et al.Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005;165:14301435.
5.Maltezou, HC, Giakkoupi, P, Maragos, A, et al.Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect 2009;58:213219.
6.Navon-Venezia, S, Leavitt, A, Schwaber, MJ, et al; Israeli KPC Kpn Study Group. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother 2009;53:818820.
7.Patel, G, Huprikar, S, Factor, SH, Jenkins, SG, Calfee, DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008; 29:10991106.
8.Marchaim, D, Navon-Venezia, S, Schwaber, MJ, Carmeli, Y. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbape-nemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother 2008;52:14131418.
9.Kochar, S, Sheard, T, Sharma, R, et al.Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2009;30:447452.
10.Leavitt, A, Navon-Venezia, S, Chmelnitsky, I, Schwaber, MJ, Carmeli, Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob Agents Chemother 2007;51:30263029.
11.Horan, TC, Andrus, M, Dudeck, MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008;36:309332.
12.Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: 16th informational supplement. CLSI document M100-S16. Wayne, PA: CLSI, 2006.
13.Woodford, N, Tierno, PM Jr, Young, K, et al.Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York medical center. Antimicrob Agents Chemother 2004;48: 47934799.
14.Hindiyeh, M, Smollen, G, Grossman, Z, et al.Rapid detection of blaKPC carbapenemase genes by real-time PCR. J Clin Microbiol 2008;46:28792883.
15.Shardell, M, Harris, AD, El-Kamary, SS, Furano, JP, Miller, RR, Perencevich, EN. Statistical analysis and application of quasi experiments to antimicrobial resistance intervention studies. Clin Infect Dis 2007;45:901907.
16.Harbarth, S, Samore, MH. Interventions to control MRSA: high time for time-series analysis? J Antimicrob Chemother 2008;62:431433.
17.Peña, C, Pujol, M, Ricart, A, et al.Risk factors for faecal carriage of Klebsiella pneumoniae producing extended spectrum β-lactamase (ESBL-KP) in the intensive care unit. J Hosp Infect 1997;35:916.
18.Lucet, JC, Chevret, S, Decre, D, et al.Outbreak of multiply resistant en-terobacteriaceae in an intensive care unit: epidemiology and risk factors for acquisition. Clin Infect Dis 1996;22:430436.
19.Martins, IS, Pessoa-Silva, CL, Nouer, SA, et al.Endemie extended-spectrum β-lactamase-producing Klebsiella pneumoniae at an intensive care unit: risk factors for colonization and infection. Microb Drug Resist 2006; 12:5058.
20.Branger, C, Bruneau, B, Lesimple, AL, et al.Epidemiological typing of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates responsible for five outbreaks in a university hospital. J Hosp Infect 1997;36:2336.
21.DiPersio, JR, Deshpande, LM, Biedenbach, DJ, Toleman, MA, Walsh, TR, Jones, RN. Evolution and dissemination of extended-spectrum β-lactamase-producing Klebsiella pneumoniae: epidemiology and molecular report from the SENTRY Antimicrobial Surveillance Program (1997-2003). Diagn Microbiol Infect Dis 2005;51:17.
22.Kang, CI, Kim, SH, Kim, DM, et al.Risk factors for and clinical outcomes of bloodstream infections caused by extended-spectrum beta-lactamase- producing Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2004;25: 860867.
23.Laurent, C, Rodriguez-Villalobos, H, Rost, F, et al.Intensive care unit outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae controlled by cohorting patients and reinforcing infection control measures. Infect Control Hosp Epidemiol 2008;29:517524.
24.Peña, C, Pujol, M, Ardanuy, C, et al.Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum β-lactamases. Antimicrob Agents Chemother 1998;42:5358.
25.Lee, J, Pai, H, Kim, YK, et al.Control of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing antimicrobial agent usage policy. J Antimicrob Chemother 2007;60:629637.
26.Lucet, JC, Decré, D, Fichelle, A, et al.Control of a prolonged outbreak of extended-spectrum β-lactamase-producing Enterobacteriaceae in a university hospital. Clin Infect Dis 1999;29:14111418.
27.Harris, AD, McGregor, JC, Furano, JP. What infection control interventions should be undertaken to control multidrug-resistant gram-negative bacteria? Clin Infect Dis 2006;43(suppl 2):S57S61.
28.Clancy, M, Graepler, A, Wilson, M, Douglas, I, Johnson, J, Price, CS. Active screening in high-risk units is an effective and cost-avoidant method to reduce the rate of methicillin-resistant Staphylococcus aureus infection in the hospital. Infect Control Hosp Epidemiol 2006;27:10091017.
29.Jernigan, JA, Clemence, MA, Stott, GA, et al.Control of methicillin-resistant Staphylococcus aureus at a university hospital: one decade later. Infect Control Hosp Epidemiol 1995;16:686696.
30.West, TE, Guerry, C, Hiott, M, Morrow, N, Ward, K, Saigado, CD. Effect of targeted surveillance for control of methicillin-resistant Staphylococcus aureus in a community hospital system. Infect Control Hosp Epidemiol 2006;27:233238.
31.Troche, G, Joly, LM, Guibert, M, Zazzo, JF. Detection and treatment of antibiotic-resistant bacterial carriage in a surgical intensive care unit: a 6-year prospective survey. Infect Control Hosp Epidemiol 2005;26:161165.
32.Gardam, MA, Burrows, LL, Kus, JV, et al.Is surveillance for multidrug-resistant Enterobacteriaceae an effective infection control strategy in the absence of an outbreak? J Infect Dis 2002;186:17541760.
33.Calfee, D, Jenkins, SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol 2008;29:966968.
34.Harris, AD, Nemoy, L, Johnson, JA, et al.Co-carriage rates of vancomycin-resistant Enterococcus and extended-spectrum beta-lactamase-producing bacteria among a cohort of intensive care unit patients: implications for an active surveillance program. Infect Control Hosp Epidemiol 2004;25: 105108.
35.Chaix, C, Durand-Zaleski, I, Alberti, C, Brun-Buisson, C. Control of endemic methicillin-resistant Staphylococcus aureus: a cost-benefit analysis in an intensive care unit. JAMA 1999;282:17451751.
36.Harbarth, S, Fankhauser, C, Schrenzel, J, et al.Universal screening for methicillin-resistant Staphylococcus aureus at hospital admission and nosocomial infection in surgical patients. JAMA 2008;299:11491157.
37.Centers for Disease Control and Prevention (CDC). Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 2009;58:256260.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed