Skip to main content Accessibility help
×
×
Home

Using Electronic Health Information to Risk-Stratify Rates of Clostridium difficile Infection in US Hospitals

  • Marya D. Zilberberg (a1), Ying P. Tabak (a2), Dawn M. Sievert (a3), Karen G. Derby (a2), Richard S. Johannes (a2) (a4), Xiaowu Sun (a2) and L. Clifford McDonald (a3)...

Abstract

Background.

Expanding hospitalized patients' risk stratification for Clostridium difficile infection (CDI) is important for improving patient safety. We applied definitions for hospital-onset (HO) and community-onset (CO) CDI to electronic data from 85 hospitals between January 2007 and June 2008 to identify factors associated with higher HO CDI rates.

Methods.

Nonrecurrent CDI cases were identified among adult (≥18-year-old) inpatients by a positive C. difficile toxin assay result more than 8 weeks after any previous positive result. Case categories included HO, CO-hospital associated (CO-HA), CO-indeterminate hospital association (CO-IN), and CO–non–hospital associated (CO-NHA). C. difficile testing intensity (CDTI) was defined as the total number of C. difficile tests performed, normalized to the number of patients with at least 1 C. difficile toxin test recorded. We calculated both the incidence density and the prevalence of CDI where appropriate. We fitted a multivariable Poisson model to identify factors associated with higher HO CDI rates.

Results.

Among 1,351,156 unique patients with 2,022,213 admissions, 9,803 cases of CDI were identified; of these, 50.6% were HO, 17.4% were CO-HA, 9.0% were CO-IN, and 23.0% were CO-NHA. The incidence density of HO was 6.3 per 10,000 patient-days. The prevalence of CO CDI on admission was, per 10,000 admissions, 8.4 for CO-HA, 4.4 for CO-IN, and 11.1 for CO-NHA. Factors associated (P< .0001) with higher HO CDI rates included older age, higher CO-NHA prevalence on admission, and increased CDTI.

Conclusion.

Electronic health information can be leveraged to risk-stratify HO CDI rates by patient age and CO-NHA prevalence on admission. Hospitals should optimize diagnostic testing to improve patient care and measured CDI rates.

Copyright

Corresponding author

Prevention and Response Branch, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-35, Atlanta, GA 30333 (cmcdonald1@cdc.gov)

References

Hide All
1.Warny, M, Pepin, J, Fang, A, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 2005;366(9491):10791084.
2.Stabler, RA, Dawson, LF, Phua, LTH, Wren, BW. Comparative analysis of BI/NAP1/027 hypervirulent strains reveals novel toxin B-encoding gene (tcdB) sequences. J Med Microbiol 2008;57(6):771775.
3.Wilcox, MH, Fawley, WN. Hospital disinfectants and spore formation by Clostridium difficile. Lancet 2000;356(9238):1324.
4.Zilberberg, MD, Shorr, AF, Kollef, MH. Increase in adult Clostridium difficile-related hospitalizations and case-fatality rate, United States, 2000–2005. Emerg Infect Dis 2008;14(6):929931.
5.Zilberberg, MD, Tillotson, GS, McDonald, C. Clostridium difficile infections among hospitalized children, United States, 1997–2006. Emerg Infect Dis 2010;16(4):604609.
6.Noren, T, Akerlund, T, Back, E, et al. Molecular epidemiology of hospital-associated and community-acquired Clostridium difficile infection in a Swedish county. J Clin Microbiol 2004;42(8):36353643.
7.McDonald, LC, Coignard, B, Dubberke, E, et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol 2007;28(2):140145.
8.Association for Professionals in Infection Control and Epidemiology (APIC). Legislation in progress. http://www.apic.org/map/index.htm. Accessed September 16, 2010.
9.Benoit, S, McDonald, L, English, R, Tokars, J. Automated surveillance of Clostridium difficile infections using BioSense. Infect Control Hosp Epidemiol 2011;32(1):2633.
10.Brossette, SE, Hacek, DM, Gavin, PJ, et al. A laboratory-based, hospital-wide, electronic marker for nosocomial infection: the future of infection control surveillance? Am J Clin Pathol 2006;125(1):3439.
11.Brossette, SE, Sprague, AP, Hardin, JM, Waites, KB, Jones, WT, Moser, SA. Association rules and data mining in hospital infection control and public health surveillance. J Am Med Inform Assoc 1998;5(4):373381.
12.Kilgore, ML, Ghosh, K, Beavers, CM, Wong, DY, Hymel, PA Jr, Brossette, SE. The costs of nosocomial infections. Med Care 2008;46(1):101104.
13.American Hospital Association (AHA). Annual Survey Database, Chicago, 111. Fiscal Year 2007. http://www.aha.org/. Accessed September 16, 2010.
14.Peterson, LR, Robicsek, A. Does my patient have Clostridium difficile infection? Ann Intern Med 2009;151(3):176179.
15.Jarvis, WR, Schlosser, J, Jarvis, AA, Chinn, RY. National point prevalence of Clostridium difficile in US health care facility inpatients, 2008. Am J Infect Control 2009;37(4):263270.
16.Cohen, SH, Gerding, DN, Johnson, S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 2010;31(5):431455.
17.Luo, RF, Banaei, N. Is repeat PCR needed for the diagnosis of Clostridium difficile infection? J Clin Microbiol 2010;48(10):37383741.
18.Campbell, RJ, Giljahn, L, Machesky, K, et al. Clostridium difficile infection in Ohio hospitals and nursing homes during 2006. Infect Control Hosp Epidemiol 2009;30(6):526533.
19.Dubberke, ER, Butler, AM, Yokoe, DS, et al. Multicenter study of Clostridium difficile infection rates from 2000 to 2006. Infect Control Hosp Epidemiol 2010;31(10):10301037.
20.Agency for Healthcare Research and Quality (AHRQ). Healthcare Cost and Utilization Project (HCUP). http://www.ahrq.gov/data/hcup/. Accessed September 16, 2010.
21.Dubberke, ER, Butler, AM, Yokoe, DS, et al. Multicenter study of surveillance for hospital-onset Clostridium difficile infection by the use of ICD-9-CM diagnosis codes. Infect Control Hosp Epidemiol 2010;31(3):262268.
22.Centers for Disease Control and Prevention. Multidrug-Resistant Organism and Clostridium difficile-Associated Disease (MDRO/CDAD) Module. http://www.cdc.gov/nhsn/PDFs/pscManual/12pscMDRO_CDADcurrent.pdf. Accessed September 16, 2010.
23.Centers for Disease Control and Prevention. National Healthcare Safety Network (NHSN): clinical document architecture (CDA). http://www.cdc.gov/nhsn/CDA_eSurveillance.html. Accessed September 16, 2010
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Infection Control & Hospital Epidemiology
  • ISSN: 0899-823X
  • EISSN: 1559-6834
  • URL: /core/journals/infection-control-and-hospital-epidemiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed