Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T04:46:04.165Z Has data issue: false hasContentIssue false

The Abundance Pattern of Elements Having Low Nebular Condensation Temperatures in Interplanetary Dust Particles: Evidence for a New Chemical Type of Chondritic Material

Published online by Cambridge University Press:  27 February 2018

G. J. Flynn
Affiliation:
Dept of Physics, SUNY-Plattsburgh, Pittsburgh NY, 12901
S. Bajt
Affiliation:
Center for Advanced Radiation Sources, The University of Chicago, Chicago IL 60637
S. R. Sutton
Affiliation:
Dept. of Geophysical Science, The University of Chicago, Chicago IL 60637
M. E. Zolensky
Affiliation:
NASA Johnson Space Center, Houston TX 77058
K. L. Thomas
Affiliation:
Lockheed-Martin, Houston TX, 77058
L. P Keller
Affiliation:
MVA Associates, Norcross GA, 30093

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The abundances of Ni, Fe, Cr, Mn, P, Cu, K, Na, Ga, Ge, Se, Zn, S, Br, and C were measured in interplanetary dust particles (IDPs) collected from the Earth's stratosphere. All elements with nebular condensation temperatures lower than Mn, except S, were enriched relative to the most volatile-rich type of meteorite while the refractory elements Cr and Ni were present at chondritic abundances. This element abundance pattern is consistent with nebular condensation, suggesting the IDPs condensed at either a different location or time in the evolving solar nebula than do the meteorites. The enrichments of the major elements C, Na, P, and K exclude the possibility that the volatile enrichment in IDPs results from a minor amount of contamination.

Type
VIII. Chemistry of the Interplanetary Dust
Copyright
Copyright © Astronomical Society of the Pacific 1996

References

Anders, E. & Ebihara, M. 1982, Geochim. Cosmochim. Acta, 46, 23632380.Google Scholar
Arndt, P Maetz, M. & Jessberger, E. K. 1995, Meteoritics, 30 483.Google Scholar
Fraundorf, P., Brownlee, D. E. & Walker, R. M. 1983, in Comets (ed. Wilkening, L. L.) Univ. of Arizona Press, Tucson, 383412.Google Scholar
Flynn, G. J., Sutton, S. R., Thomas, K. L., Keller, L. P., & Klock, W 1992, Lunar & Planet. Sci. XXIII, 375376.Google Scholar
Flynn, G.J., Sutton, S.R. & Bajt, S. 1993, Lunar & Planet. Sci. XXIV, 497498.Google Scholar
Flynn, G.J., Bajt, S., Sutton, S.R., and Klock, W. 1995, Meteoritics, 30, 505.Google Scholar
Jessberger, E.K., Bohsung, J., Chakaveh, S., & Traxel, K. 1992, Earth Planet. Sci. Lett., 112, 9199.CrossRefGoogle Scholar
Keller, L.P., Thomas, K.L. & McKay, D.S. 1995, “Mineralogical Changes in IDPs Resulting from Atmospheric Entry Heating,” this volume.Google Scholar
Mackinnon, I.D.R. & Mogk, D.W 1985, Geophys. Res. Lett., 12, 9396.CrossRefGoogle Scholar
Mackinnon, I.D.R. & Rietmeijer, F 1987, Rev of Geophys., 25, 15271553.Google Scholar
Rietmeijer, F.J.M. 1995, Meteoritics, 30, 3341.CrossRefGoogle Scholar
Schramm, L.S., Brownlee, D.E. & Wheelock, M. 1989, Meteoritics, 24, 99112.CrossRefGoogle Scholar
Stephan, T, Jessberger, E.K., Rulle, H., Thomas, K.L., and Klock, W 1994, Lunar & Planet. Sci. XXV, 13411342.Google Scholar
van der Stap, C. C. A. H., Vis, R. D., & Verheul, H. 1986, Lunar & Planet. Sci. XVII, 10131014.Google Scholar
Warren, J. L., and Zolensky, M. E. 1994, in Analysis of Interplanetary Dust, AIP Conf. Proc. 310 (eds., Zolensky, M. E., Wilson, T L., Rietmeijer, F J. M., & Flynn, G. J.), AIP Press, New York, 245254.Google Scholar