Skip to main content Accessibility help

Impact of space weather on climate and habitability of terrestrial-type exoplanets

Published online by Cambridge University Press:  31 July 2019

V. S. Airapetian
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA Department of Physics, American University, Washington, DC, USA
R. Barnes
University of Washington, Seattle, Washington, USA
O. Cohen
Lowell Center for Space Science and Technology, University of Massachusetts, Lowell, MA, USA
G. A. Collinson
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
W. C. Danchi
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
C. F. Dong
Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA
A. D. Del Genio
NASA Goddard Institute for Space Studies, New York, NY, USA
K. France
Laboratory for Atmospheric and Space Physics, University of Colorado, 600 UCB, Boulder, CO80309, USA
K. Garcia-Sage
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
A. Glocer
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
N. Gopalswamy
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
J. L. Grenfell
Department of Extrasolar Planets and Atmospheres (EPA), Institute for Planetary Research, German Aerospace Centre (DLR), Rutherfordstr. 2, 12489 Berlin, Adlershof, Germany
G. Gronoff
NASA/LaRC, Hampton, VA, USA
M. Güdel
Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, 1180, Vienna, Austria
K. Herbst
Christian-Albrechts-Universität zu Kiel, Institute for Experimental and Applied Physics, Leibnizstr. 11, 24118 Kiel, Germany
W. G. Henning
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
C. H. Jackman
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
M. Jin
SETI Institute, Mountain View, CA94043, USA
C. P. Johnstone
Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, 1180, Vienna, Austria
L. Kaltenegger
Carl Sagan Institute, Cornell University, Ithaca, NY, USA
C. D. Kay
Christian-Albrechts-Universität zu Kiel, Institute for Experimental and Applied Physics, Leibnizstr. 11, 24118 Kiel, Germany
K. Kobayashi
Department of Chemistry, Yokohama National University, Yokohama, Japan
W. Kuang
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
G. Li
Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL35899, USA
B. J. Lynch
Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, USA
T. Lüftinger
Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, 1180, Vienna, Austria
J. G. Luhmann
Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, USA
H. Maehara
Subaru Telescope Okayama Branch Office, NAOJ, Asakuchi, Okayama 719-02, Japan
M. G. Mlynczak
NASA/LaRC, Hampton, VA, USA
Y. Notsu
Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan
R. A. Osten
Space Telescope Science Institute & Johns Hopkins University, MD, USA
R. M. Ramirez
Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Tokyo152-8550, Japan
S. Rugheimer
Centre for Exoplanet Science, University of St. Andrews, School of Earth and Environmental Sciences, Irvine Building, North Street, St. Andrews, KY16 9AL, UK
M. Scheucher
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, D-10623Berlin, Germany
J. E. Schlieder
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA
K. Shibata
Astronomical Observatory, Kyoto University, Sakyo, Kyoto606-8502, Japan
C. Sousa-Silva
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139, USA
V. Stamenković
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
R. J. Strangeway
University of California, Los Angeles, CA, USA
A. V. Usmanov
Sellers Exoplanet Environments Collaboration, NASA/GSFC, Greenbelt, MD, USA University of Delaware, DE19716, USA
P. Vergados
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
O. P. Verkhoglyadova
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
A. A. Vidotto
Trinity College Dublin, Dublin, Ireland
M. Voytek
NASA Headquarters, Washington, DC, USA
M. J. Way
NASA Goddard Institute for Space Studies, New York, NY, USA
G. P. Zank
Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL35899, USA
Y. Yamashiki
Graduate School of Advanced Integrated Studies in Human Survivability (GSAIS), Kyoto University, Kyoto, Japan


The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.

Review Article
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below.


Abbot, DS and Switzer, ER (2011) The Steppenwolf: a proposal for a habitable planet in interstellar space. The Astrophysical Journal Letters 735, L27.CrossRefGoogle Scholar
Acuña, MH, Connerney, JEP, Ness, NF, Lin, RP, Mitchell, D, Carlson, CW, McFadden, J, Anderson, KA, Reme, H, Mazelle, C, Vignes, D, Wasilewski, P and Cloutier, P (1999) Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790793.Google ScholarPubMed
Airapetian, VS (2018a) Extreme Events in Geospace, 1st Edn edn, Elseiver: Elsevier, pp. 611632, Chapter 25 - Extreme Space Weather in Time: Effects on Earth.CrossRefGoogle Scholar
Airapetian, VS (2018b) Terrestrial planets under the young Sun. Nature Astronomy 2, 448449.CrossRefGoogle Scholar
Airapetian, VS and Cuntz, M (2015) Atmospheric heating and wind acceleration in cool evolved star. In Ake, T and Griffin, E (eds), Giants of Eclipse: The ζ Aurigae Stars and Other Binary Systems. Astrophysics and Space Science Library, Vol. 408. Switzerland: Springer International Publishing, pp. 123156.CrossRefGoogle Scholar
Airapetian, VS and Usmanov, A (2016) Reconstructing the solar wind from Its early history to current epoch. ApJ Letters 817, L24.CrossRefGoogle Scholar
Airapetian, VS, Carpenter, KG and Ofman, L (2010) Winds from luminous late-type stars. II. Broadband frequency distribution of Alfvén waves. The Astrophysical Journal 723, 12101218.CrossRefGoogle Scholar
Airapetian, VS, Glocer, A, Danchi, WC and Gronoff, G (2015) The Early Earth Under a Superflare and Super-Coronal Mass Ejection Attack: Prospects for Life. IAU General Assembly, Meeting #29, id.2190973.Google Scholar
Airapetian, VS, Glocer, A, Gronoff, G, Hébrard, E and Danchi, W (2016) Prebiotic chemistry and atmospheric warming of early earth by an active young Sun. Nature Geoscience 9, 452–255.CrossRefGoogle Scholar
Airapetian, VS, Glocer, A, Khazanov, GV, Loyd, ROP, , France, K, , Sojka, J, , Danchi, WC, and Liemohn, MW, (2017a) How hospitable are space weather affected habitable zones? The role of ion escape. ApJ Letters 836, L3L9.CrossRefGoogle Scholar
Airapetian, VS, Jackman, CH, Mlynczak, M, Danchi, W and Hunt, L (2017b) Atmospheric beacons of life from exoplanets around G and K stars. Nature Scientific Reports 7, 1414114150.CrossRefGoogle Scholar
Airapetian, VS, Danchi, WC, Chen, PC, Rabin, DM, Carpenter, KG and Mlynczak, MG (2017c) Detecting the Beacons of Life with Exo-Life Beacon Space Telescope (ELBST). In Planetary Science Vision 2050 Workshop, held 27–28 February and 1 March, 2017 in Washington, DC. LPI Contribution No. 1989, id.821.Google Scholar
Airapetian, VS, Danchi, WC, Dong, CF, Rugheimer, S, Mlynczak, M, Stevenson, KB, Henning, WG, Grenfell, JL, Jin, M, Glocer, A, Gronoff, G, Lynch, B, Johnstone, C, Lueftinger, T, Guedel, M, Kobayashi, K, Fahrenbach, A, Hallinan, G, Stamenkovic, V, Cohen, O, Kuang, W, van der Holst, B, Manchester, C, Zank, G, Verkhoglyadova, O, Sojka, J, Maehara, H, Notsu, Y, Yamashiki, Y, France, K, Lopez Puertas, M, Funke, B, Jackman, C, Kay, C, Leisawitz, D and Alexander, D (2018a) Life Beyond the Solar System: Space Weather and Its Impact on Habitable Worlds, the white paper was submitted to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Universe, eprint, arXiv:1801.07333Google Scholar
Airapetian, VS, Adibekyan, V, Ansdell, M, Cohen, O, Cuntz, M, Danchi, W, Dong, CF, Drake, JJ, Fahrenbach, A, France, K, Garcia-Sage, K, Glocer, A, Grenfell, JL, Gronoff, G, Hartnett, H, Henning, W, Hinkel, NR, Jensen, AG, Jin, M, Kalas, P, Kane, SR, Kobayashi, K, Kopparapu, R, Leake, J, López-Puertas, M, Lueftinger, T, Lynch, B, Lyra, W, Mandell, AM, Mandt, KE, Moore, WB, Nna-Mvondo, D, Notsu, Y, Maehara, H, Yamashiki, Y, Shibata, K, Oman, LD, Osten, RA, Pavlov, A, Ramirez, RM, Rugheimer, S, Schlieder, JE, Schnittman, JD, Shock, EL, Sousa-Silva, C, Way, MJ, Yang, Y, Young, PA and Zank, GP (2018b) Exploring extreme 2732 space weather factors of exoplanetary habitability, the white paper submitted to the US. National Academy of Sciences call on Exoplanet Science Strategy, eprint arXiv:1803.03751.Google Scholar
Airapetian, Vladimir, Adibekyan, V, Ansdell, M, Alexander, D, Barklay, T, Bastian, T, Boro Saikia, S, Cohen, O, Cuntz, M, Danchi, W, Davenport, J, DeNolfo, G, DeVore, R, Dong, CF, Drake, JJ, France, K, Fraschetti, F, Herbst, K, Garcia-Sage, K, Gillon, M, Glocer, A, Grenfell, JL, Gronoff, G, Gopalswamy, N, Guedel, M, Hartnett, H, Harutyunyan, H, Hinkel, NR, Jensen, AG, Jin, M, Johnstone, C, Kahler, S, Kalas, P, Kane, SR, Kay, C, Kitiashvili, IN, Kochukhov, O, Kondrashov, D, Lazio, J, Leake, J, Li, G, Linsky, J, Lueftinger, T, Lynch, B, Lyra, W, Mandell, AM, Mandt, KE, Maehara, H, Miesch, MS, Mickaelian, AM, Mouschou, S, Notsu, Y, Ofman, L, Oman, LD, Osten, RA, Oran, R, Petre, R, Ramirez, RM, Rau, G, Redfield, S, Réville, V, Rugheimer, S, Scheucher, M, Schlieder, JE, Shibata, K, Schnittman, JD, Soderblom, David, Strugarek, A, Turner, JD, Usmanov, A, Van Der Holst, B, Vidotto, A, Vourlidas, A, Way, MJ, Wolk, Scott J, Zank, GP, Zarka, P, Kopparapu, R, Babakhanova, S, Pevtsov, AA, Lee, Y, Henning, W, Colón, KD and Wolf, ET (2019a) Reconstructing Extreme Space Weather from Planet Hosting Stars. White Paper submitted to the Astronomy and Astrophysics Decadal Survey (Astro2020), eprint, arXiv:1903.06853.Google Scholar
Airapetian, VS, Jin, M, Lugtinger, T, Danchi, W, van der Holst, B and Manchester, WB (2019b) One year in the life of the variable young Sun: dynamic paleo space weather. submitted to Nature Astronomy.Google Scholar
Alvarado-Gómez, JD, Drake, JJ, Cohen, O, Moschou, SP and Garraffo, C (2018) Suppression of coronal mass ejections in active stars by an overlying large-scale magnetic field: a numerical study. ApJ Letters 862, 93105.CrossRefGoogle Scholar
Anbar, AD, Duan, Y, Lyons, TW, Arnold, GL, Kendall, B, Creaser, RA, Kaufman, AJ, Gordon, GW, Scott, C, Garvin, J and Buick, R (2007) A whiff of oxygen before the great oxidation event? Science 317, 19031906.CrossRefGoogle ScholarPubMed
Anderson, BJ, Johnson, CL, Korth, H, Winslow, RM, Borovsky, JE, Purucker, ME, Slavin, JA, Solomon, SC, Zuber, MT and McNutt, RL Jr. (2012) Low-degree structure in Mercury's planetary magnetic field. Journal of Geophysical Research 117, E00L12.CrossRefGoogle Scholar
Andersson, ME, Verronen, PT, Rodger, CJ, Clilverd, MA and Seppälä, A (2014) Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone. Nature Communications 5, 15.CrossRefGoogle ScholarPubMed
Anglada-Escudé, Guillem, Amado, Pedro J, Barnes, John, Berdiñas, Zaira M, Butler, R. Paul, Coleman, Gavin AL, de La Cueva, Ignacio, Dreizler, Stefan, Endl, Michael, Giesers, Benjamin, Jeffers, Sandra V, Jenkins, James S, Jones, Hugh RA, Kiraga, Marcin, Kürster, Martin, López-González, María J, Marvin, Christopher J, Morales, Nicolás, Morin, Julien, Nelson, Richard P, Ortiz, José L, Ofir, Aviv, Paardekooper, Sijme-Jan, Reiners, Ansgar, Rodríguez, Eloy, Rodríguez-López, Cristina, Sarmiento, Luis F, Strachan, John P, Tsapras, Yiannis, Tuomi, Mikko and Zechmeister, Mathias (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437440.CrossRefGoogle Scholar
Angsmann, M Fränz, Dubinin, E, Woch, J, Barabash, S, Zhang, TL and Motschmann, U (2011) Magnetic states of the ionosphere of Venus observed by Venus express, planet. Space Science 59, 327337.CrossRefGoogle Scholar
Antiochos, SK, DeVore, CR and Klimchuk, JAA (1999) Model for solar coronal mass ejections. The Astrophysical Journal 510, 485493.CrossRefGoogle Scholar
Arney, Giada, Domagal-Goldman, Shawn D, Meadows, Victoria S, Wolf, Eric T, Schwieterman, Edward, Charnay, Benjamin, Claire, Mark, Hébrard, Eric and Trainer, Melissa G (2016) The pale orange dot: the spectrum and habitability of hazy Archaean Earth. Astrobiology 16, 873899.CrossRefGoogle Scholar
Atri, D (2017) Modelling stellar proton event-induced particle radiation dose on close-in exoplanets. Monthly Notices of the Royal Astronomical Society 465, L34L38.CrossRefGoogle Scholar
Aubert, J, Amit, H, Hulot, G and Olson, P (2008) Thermochemical flows coupled the Earth's inner core growth to mantle heterogeneity. Nature.CrossRefGoogle ScholarPubMed
Ayres, TR (1997) Evolution of the solar ionizing flux. Journal of Geophysical Research 102, 16411651.CrossRefGoogle Scholar
Babcock, HD (1959) The Sun's polar magnetic field. The Astrophysical Journal 130, 364.CrossRefGoogle Scholar
Babcock, HW and Babcock, HD (1955) The Sun's magnetic field, 1952–1954. The Astrophysical Journal 212, 349.CrossRefGoogle Scholar
Badescu, V (2011) Free-floating planets as potential seats for aqueous and non-aqueous life. Icarus 216, 485491.CrossRefGoogle Scholar
Baines, KH, Atreya, SK, Bullock, MA, Grinspoon, DH, Mahaffy, P, Russell, CT, Schubert, G and Zahnle, K (2013) The atmospheres of the terrestrial planets: clues to the origins and early evolution of Venus, Earth, and Mars. In Mackwell, SJ et al. (ed.), Comparative Climatology of Terrestrial Planets. Tucson: YY. Univ. of Arizona, pp. 137160.Google Scholar
Barnes, R, Raymond, SN, Jackson, B and Greenberg, R (2008) Tides and the evolution of planetary habitability. Astrobiology 8, 557568.CrossRefGoogle ScholarPubMed
Barnes, R, Jackson, B, Greenberg, R and Raymond, SN (2009) Tidal limits to planetary habitability. The Astrophysical Journal Letters 700, L30.CrossRefGoogle Scholar
Barnes, R, Deitrick, R, Luger, R, Driscoll, PE, Quinn, TR, Fleming, DP, 2780 Guyer, B, McDonald, DV, Meadows, VS and Arney, G (2016) The habitability of Proxima Centauri b I: evolutionary scenarios. Astrobiology. eprint 2782 arXiv:1608.06919.Google Scholar
Barr, AC, Dobos, V and Kiss, LL (2017) Interior Structures and Tidal Heating in the TRAPPIST-1 Planets. arXiv preprint arXiv:1712.05641.Google Scholar
Barstow, JK and Irwin, PGJ (2016) Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? Monthly Notices of the Royal Astronomical Society. arXiv:1605.07352.CrossRefGoogle Scholar
Bauer, SJ and Hartle, RE (1974) Venus ionosphere: an interpretation of Mariner 10 observations. Geophysical Research Letters 1, 79.CrossRefGoogle Scholar
Baumgaertner, AJG, Seppälä, A, Jöckel, P and Clilverd, MA (2011) Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index. Atmospheric Chemistry and Physics 11, 45214531.CrossRefGoogle Scholar
Beech, MJR (2011) Since when was the Sun a typical star? Journal of the Royal Astronomical Society of Canada 105, 232.Google Scholar
Beichman, C, Benneke, B, Knutson, H, Smith, R, Lagage, PO, Dressing, C, Latham, D, Lunine, J and Bell, JM (2008) The Dynamics in the Upper Atmospheres of Mars and Titan (PhD thesis), University of Michigan. Publication Number: AAT 3328763.Google Scholar
Bell, JM (2008) The Dynamics in the Upper Atmospheres of Mars and Titan (PhD thesis), University of Michigan. Publication Number: AAT 3328763.Google Scholar
Berdyugina, SV, Kuhn, JR, Langlois, M, Moretto, G, Krissansen-Totton, J, Catling, D, Grenfell, JL, Santl-Temkiv, T, Finster, K, Tarter, J, Marchis, F, Hargitai, H and Apai, D (2018) The Exo-Life Finder (ELF) telescope: new strategies for direct detection of exoplanet biosignatures and technosignatures. Proceedings of the SPIE 10700, 107004I.CrossRefGoogle Scholar
Biggin, AJ, Piispa, EJ, Pesonen, LJ, Holme, R, Paterson, GA, Veikkolainen, T and Tauxe, L (2015) Paleomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 526, 245248.CrossRefGoogle Scholar
Bolmont, E, Selsis, F, Owen, JE, Ribas, I, Raymond, SN, Leconte, J and Gillon, M (2017) Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1. Monthly Notices of the Royal Astronomical Society 464, 37283741.CrossRefGoogle Scholar
Bono, RK, Tarduno, JA, Nimmo, F and Cottrell, RD (2019) Young inner core inferred from Edicarran ultra-low geomagnetic field intensity. Nature Geoscience 12, 143147.CrossRefGoogle Scholar
Saikia S, Boro, Lueftinger, T, Jeffers, SV, Folsom, CP, See, V, Petit, P, Marsden, SC, Vidotto, AA, Morin, J, Reiners, A, Guedel, Mand Bcool collaboration (2018) Direct evidence of full dipole flip during the magnetic cycle of a sun-like star. Astronomy & Astrophysics 620, L11L23.Google Scholar
Borucki, WJ (1982a) Comparison of Venusian lightning observations. Icarus 52, 302321.CrossRefGoogle Scholar
Borucki, WJ (1982b) Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere. Icarus 51, 302332.CrossRefGoogle Scholar
Bourrier, V, de Wit, J, Bolmont, E, Stamenković, V, Wheatley, PJ, Burgasser, AJ, Delrez, L, Demory, B-O, Ehrenreich, D, Gillon, M, Jehin, E, Leconte, J, Lederer, SM, Lewis, N, Triaud, AHMJ and Van Grootel, V (2017) Temporal evolution of the high-energy irradiation and water content of TRAPPIST-1 exoplanets. The Astronomical Journal 154, 121137.CrossRefGoogle Scholar
Boutle, A, Mayne, NJ, Drummond, B, Manners, J, Goyal, J, Lambert, FH, Acreman, DM and Earnshaw, PD (2017) Exploring the climate of Proxima b with the Met Office Unified Model. Astronomy & Astrophysics 601, A120.CrossRefGoogle Scholar
Bracewell, R (1978) Detecting nonsolar planets by spinning infrared interferometer. Nature 274, 780.CrossRefGoogle Scholar
Braginsky, SI and Roberts, PH (1995) Equations governing convection in Earth's core and the geodynamics. Geophysical & Astrophysical Fluid Dynamics 79, 197.CrossRefGoogle Scholar
Brain, DA, Bagenal, F, Ma, Y-J, Nilsson, H and Stenberg Wieser, G (2017) Atmospheric escape from unmagnetized bodies. Journal of Geophysical Research: Planets 121, 23642385.Google Scholar
Brambles, OJ, Lotko, W, Zhang, B, Wiltberger, M, Lyon, J and Strangeway, RJ (2011) Magnetosphere sawtooth oscillations induced by ionospheric outflow. Science 332, 11831186.CrossRefGoogle ScholarPubMed
Brasseur, GP and Solomon, S (2005) Aeronomy of the Middle Atmosphere, 3rd Edn., Springer.CrossRefGoogle Scholar
Breuer, D and Moore, WB (2007) Treatise on Geophysics, Planets and Moons: Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io, eds. Schubert, G. & Spohn, T.. Amsterdam: Elsevier, 299.CrossRefGoogle Scholar
Buffett, BA, Huppert, HE, Lister, JR and Woods, AW (1996) On the thermal evolution of the Earth's core. Journal of Geophysical Research 101, 79898006.CrossRefGoogle Scholar
Bullock, MA and Grinspoon, DH (2001) The recent evolution of climate on Venus. Icarus 150, 1937.CrossRefGoogle Scholar
Cairns, IH (2011) The Sun, the Solar Wind, and the Heliosphere. New York: Springer, p. 269.Google Scholar
Calisto, M, Verronen, PT, Rozanov, E and Peter, T (2012) Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. Atmospheric Chemistry and Physics 12, 86798686.CrossRefGoogle Scholar
Candelaresi, S, Hillier, A, Maehara, H, Brandenburg, A and Shibata, K (2014) Superflare occurrence and energies on G-, K-, and M-type dwarfs. The Astrophysical Journal 792, 67.CrossRefGoogle Scholar
Carrington, RC (1859) Description of a singular appearance in the Sun on September 1. Monthly Notices of the Royal Astronomical Society 20, 13.CrossRefGoogle Scholar
Carter-Bond, JC, O'Brien, DP and Raymond, SN (2012) The compositional diversity of extrasolar terrestrial planets. II. Migration simulations. The Astrophysical Journal 760, 44.CrossRefGoogle Scholar
Catling, DC, Glein, CR, Zahnle, KJ and McKay, CP (2005) Why O2 is required by complex life on habitable planets and the concept of planetary ‘oxygenation time’. Astrobiology 5, 415438.CrossRefGoogle Scholar
Catling, DC, Krissansen-Totton, J, Kiang, NY, Crisp, D, Robinson, TD, DasSarma, S, Rushby, AJ, Del Genio, A, Bains, W and Domagal-Goldman, S (2018) Exoplanet bio-signatures: a framework for their assessment. Astrobiology 18, 709738.CrossRefGoogle Scholar
Charbonneau, P (2010) Dynamo models of the solar cycle. Living Reviews in Solar Physics 7, 192.CrossRefGoogle Scholar
Charnay, B, Forget, B, Wordsworth, R, Leconte, J, Millour, E, Codron, F and Spiga, EJ (2013) Exploring the faint young sun problem and the possible climates of the Archean Earth with a 3-D GCM. Journal of Geophysical Research 118, 10,41410,431.Google Scholar
Chassefiere, E (1997) Loss of water on the young Venus: the effect of a strong primitive solar wind. Icarus 126, 229232.CrossRefGoogle Scholar
Christensen, U (1984) Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophysical Journal of the Royal Astronomical Society 77, 343384.CrossRefGoogle Scholar
Chyba, C and Sagan, C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125132.CrossRefGoogle ScholarPubMed
Ciesla, FJ, Mulders, GD, Pascucci, I and Apai, D (2015) Volatile delivery to planets from water-rich planetesimals around low mass stars. The Astrophysical Journal 804, 9.CrossRefGoogle Scholar
Claire, MW, Sheets, J, Cohen, M, Ribas, I, Meadows, VS and Catling, DS (2012) Predicting Lyman-alpha and Mg II fluxes from K and M dwarfs using GALEX ultraviolet photometry. The Astrophysical Journal 757, 95.CrossRefGoogle Scholar
Cleaves, HJ, Chalmers, JH, Lazcano, A, Miller, SL and Bada, JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins of Life and Evolution of the Biosphere 38, 105115.CrossRefGoogle ScholarPubMed
Cleeves, LI, Adams, FC, Bergin, EA (2013) Exploring the origins of deuterium enrichments in solar nebular organics. Astrophysical Journal 772, 5.CrossRefGoogle Scholar
Cockell, CS, Bush, T, Bryce, C, Direito, S, Fox-Powell, M, Harrison, JP, Lammer, H, Landenmark, H, Martin-Torres, J, Nicholson, N, Noack, L, O'Malley-James, J, Payler, SJ, Rushby, A, Samuels, T, Schwendner, P, Wadsworth, J and Zorzano, MP (2016) Habitability: a review. Astrobiology 16, 89117.CrossRefGoogle ScholarPubMed
Cohen, O, Drake, JJ and Kóta, J (2012) The cosmic-ray intensity near the Archean Earth. Astrophysical Journal 760, 1.CrossRefGoogle Scholar
Cohen, O, Drake, JJ, Glocer, A, Garraffo, C, Poppenhaeger, K, Bell, JM, Ridley, AJ and Gombosi, TI (2014) Magnetospheric structure and atmospheric joule heating of habitable planets orbiting M-dwarf stars. The Astrophysical Journal 790, article id 57.CrossRefGoogle Scholar
Colavita, MM, Serabyn, E, Millan-Gabet, R, Koresko, CD, Akeson, RL, Booth, AJ, Mennesson, BP, Ragland, SD, Appleby, EC, Berkey, BC, Cooper, A, Crawford, SL, Creech-Eakman, MJ, Dahl, W, Felizardo, C, Garcia-Gathright, JI, Gathright, JT, Herstein, JS, Hovland, EE, Hrynevych, MA, Ligon, ER, Medeiros, DW, Moore, JD, Morrison, D, Paine, CG, Palmer, DL, Panteleeva, T, Smith, B, Swain, MR, Smythe, RF, Summers, KR, Tsubota, K, Tyau, C, Vasisht, G, Wetherell, E, Wizinowich, PL and Woillez, JM (2009) Keck interferometer Nuller data reduction and on-sky performance. Publications of the Astronomical Society of the Pacific 121, 11201138.CrossRefGoogle Scholar
Collinson, GA, Sibeck, DG, Masters, A, Shane, N, Zhang, TL, Fedorov, A, Barabash, S, Coates, AJ, Moore, TE, Slavin, JA, Uritsky, VM, Boardsen, S and Sarantos, M (2014) A survey of hot flow anomalies at Venus. Journal of Geophysical Research: Space Physics 119, 978991.Google Scholar
Collinson, GA, Grebowsky, J, Sibeck, DG, Jian, LK, Boardsen, S, Espley, J, Hartle, D, Zhang, TiL, Barabash, S, Futaana, Y and Kollmann, P (2015) The impact of a slow interplanetary coronal mass ejection on Venus. Journal of Geophysical Research: Space Physics 120, 283391219127.CrossRefGoogle Scholar
Cowan, NB, Greene, T, Angerhausen, D, Batalha, NE, Clampin, MK, Colon, MK, Crossfield, IJM, Fortney, JJ, Gaudi, BS, Harrington, J, Iro, N, Lillie, CF, Linsky, JL, Lopez-Morales, M, Mandell, AM and Stevenson, KB, on behalf of ExoPAG SAG-10 (2015) Characterizing transiting planet atmospheres through 2025. Publications of the Astronomical Society of the Pacific 127, 311.CrossRefGoogle Scholar
Craddock, RA and Howard, AD (2002) The case of rainfall on a warm, wet early Mars. Journal of Geophysical Research 107, 135.CrossRefGoogle Scholar
Crawford, GK, Grebowsky, J, Sibeck, DG, Jian, LK, Boardsen, S, Espley, J, Hartle, D, Zhang, TL, Barabash, S, Futaana, Y and Kollmann, P (1998) Statistical imaging of the Venus foreshock using VLF wave emissions. Journal of Geophysical Research 103, 1198512004.CrossRefGoogle Scholar
Crosby, NB, Aschwanden, MJ and Dennis, BR (1993) Frequency distributions and correlations of solar X-ray flare parameters. Solar Physics 143, 275.CrossRefGoogle Scholar
Cullum, J, Stevens, DP, Josh, MM (2016) Importance of ocean salinity for climate and habitability. PNAS 113, 42784283.CrossRefGoogle ScholarPubMed
Cuntz, M and Guinan, EF (2016) About exobiology: the case for dwarf K stars. The Astrophysical Journal 872, 79.CrossRefGoogle Scholar
Curry, SM, Luhmann, JG, Ma, YJ, Dong, CF, Brain, D, Leblanc, F, Modolo, R, Dong, Y, McFadden, J, Halekas, J, Connerney, J, Espley, J, Hara, T, Harada, Y, Lee, C, Fang, X and Jakosky, B (2015a) Response of Mars O pickup ions to the 8 March 2015 ICME: inferences from MAVEN data-based models. Geophysical Research Letters 42, 90959102.CrossRefGoogle Scholar
Curry, SM, Luhmann, J, Ma, Y, Liemohn, M, Dong, C and Hara, T (2015b) Comparative pick-up ion distributions at Mars and Venus: consequences for atmospheric deposition and escape. Planetary and Space Science 115, 3547.CrossRefGoogle Scholar
Damiani, A, Storini, M, Laurenza, M and Rafanelli, C (2008) Solar particle effects on minor components of the polar atmosphere. Annales Geophysicae 26, 361370.CrossRefGoogle Scholar
Damiani, A, Storini, M, Rafanelli, C and Diego, P (2010) The hydroxyl radical as an indicator of SEP fluxes in the high-latitude terrestrial atmosphere. Advances in Space Research 46, 12251235.CrossRefGoogle Scholar
Danchi, W, Lawson Pm Absil, O, Akeson, R, Bally, J, Barry, R, Beichman, C, Belu, A, Boyce, M, Breckinridge, J, Burrows, A, Chen, C, Cole, D, Crisp, D, Danner, R, Deroo, P, Coudé du Foresto, V, Defrère, D, Ebbets, D, Falkowski, P, Gappinger, R, Haugabook, I, Hanot, C, Henning, T, Hinz, P, Hollis, J, Hunyadi, S, Hyland, D, Johnston, K, Kaltenegger, L, Kasting, J, Kenworthy, M, Ksendzov, A, Lane, B, Laughlin, G, Lay, O, Liseau, R, Lopez, B, Millan-Gabet, R, Martin, S, Mawet, D, Mennesson, B, Monnier, J, Murakami, N, Noecker, C, Nishikawa, J, Pesesen, M, Peters, R, Quillen, A, Ragland, S, Rinehart, S, Rottgering, H, Scharf, D, Serabyn, G, Tamura, M, Tehrani, M, Traub, W, Unwin, S, Wilner, D, Woilliez, J, Woolf, N and Zhao, M (2009) Infrared Imaging, in the Exoplanet Community Report, 91–134, JPL Publication 09-3.Google Scholar
Danchi, W, Bailey, V, Bryden, G, Defrere, D, Ertel, S, Haniff, C, Hinz, P, Kennedy, G, Mennesson, B, Millan-Gabet, R, Rieke, G, Roberge, A, Serabyn, E, Skemer, A, Stapelfeldt, K, Weinberger, A, Wyatt, M and Vaz, A (2016) Enabling the direct detection of earth-sized exoplanets with the LBTI HOSTS project: a progress report, Optical and Infrared Interferometry and Imaging V, 9907, 990713.CrossRefGoogle Scholar
Danchi, W, Ertel, S, Defrere, D, Hinz, P, Mennesson, B and Kennedy, G and the HOSTS team (2018) The LBTI HOSTS Project: Instrumentation, Observations, and Results of the Survey of Exozodiacal Dust of >30 Nearby Stars, submitted to IEEE Aerospace.CrossRef30+Nearby+Stars,+submitted+to+IEEE+Aerospace.>Google Scholar
Davenport, JRA (2016) The Kepler catalog of stellar flares. The Astrophysical Journal 829, 23.CrossRefGoogle Scholar
David, TJ, Mamajek, EE, Vanderburg, A, Schlieder, JE, Bristow, M, Petigura, EA, Ciardi, DR, Crossfield, IJM, Isaacson, HT and Cody, AM, Stauffer, JR, Hillenbrand, LA, Bieryla, A, Latham, DW, Fulton, BJ, Rebull, LM, Beichman, C, Gonzales, EJ, Hirsch, LA, Howard, AW, Vasisht, G and Ygouf, M (2018) Astronomical Journal, accepted, eprint arXiv:1801.07320.Google Scholar
Davies, K (1969) Ionospheric Radio Waves. Blaisdell, MA, USA: Blaisdell.Google Scholar
Debes, JH, Ygouf, M, Choquet, E, Hines, DC, Perrin, MD, Golimowski, DA, Lajoie, C-P, Mazoyer, J, Pueyo, L, Soummer, R and van der Marel, R (2015) Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) 2015 Report, Scholar
Defrère, D, Leger, A, Absil, O, Beichman, C, Biller, B, Danchi, WC, Ergenzinger, K, Eiroa, C, Ertel, S, Fridlund, M, Garcia Munoz, A, Gillon, M, Glasse, A, Godolt, M, Grenfell, JL, Kraus, S, Labadie, L, Lacour, S, Liseau, R, Martin, G, Mennesson, B, Micela, G, Minardi, S, Quanz, SP, Rauer, H, Rinehart, S, Santos, NC, Selsis, F, Surdej, J, Tian, F, Villaver, E, Wheatley, PJ and Wyatt, M (2018) Space-based infrared interferometry to study exoplanetary atmospheres. Experimental Astronomy 46, 475495.CrossRefGoogle Scholar
Del Genio, AD and Zhou, W (1996) Simulations of superrotation of slowly rotating planets: sensitivity to rotation and initial condition. Icarus 120, 332.CrossRefGoogle Scholar
Del Genio, AD, Way, MJ and Amundsen, DS (2017) Habitable Climate Scenarios for Proxima Centauri b With a Dynamic Ocean. eprint arXiv:1709.02051.Google Scholar
Demory, BO, Gillon, M, Madhusudhan, N and Queloz, D (2015) Variability in the super-Earth 55 Cnc e. Monthly Notices of the Royal Astronomical Society 455, 20182027.CrossRefGoogle Scholar
Demory, B, Gillon, M, de Wit, J, Madhusudhan, N, Bolmont, E, Heng, K, Kataria, T, Lewis, N, Hu, R, Krick, J, Stamenković, V, Benneke, B, Kane, S and Queloz, D (2016) A map of the large day–night temperature gradient of a super-Earth exoplanet. Nature 532, 207209.CrossRefGoogle ScholarPubMed
Deng, Y, Fuller-Rowell, TJ, Akmaev, RA and Ridley, AJ (2011) Impact of the altitudinal Joule heating distribution on the thermosphere. Journal of Geophysical Research 116, A05313A05320.CrossRefGoogle Scholar
De Pontieu, B, Rouppe van der Voort, L, McIntosh, SW, Pereira, TMD, Carlsson, M, Hansteen, V, Skogsrud, H, Lemen, J, Title, A, Boerner, P, Hurlburt, N, Tarbell, TD, Wuelser, JP, De Luca, EE, Golub, L, McKillop, S, Reeves, K, Saar, S, Testa, P, Tian, H, Kankelborg, C, Jaeggli, S, Kleint, L and Martinez-Sykora, J (2014) On the prevalence of small-scale twist in the solar chromosphere and transition region. Science 346, D315.CrossRefGoogle ScholarPubMed
Des Marais, D, Harwit, MO, Jucks, KW, Kasting, JF, Lin, DNC, Lunine, JI, Schneider, J, Seager, S, Traub, WA and Woolf, NJ (2002) Remote sensing of planetary properties and bio- signatures on extrasolar terrestrial planets. Astrobiology 2, 153181.CrossRefGoogle Scholar
DeVore, CR and Antiochos, SK (2008) Homologous confined filament eruptions via magnetic reakout. The Astrophysical Journal 680, 740756.CrossRefGoogle Scholar
Donahue, TM and Russell, CT (1997) The Venus atmosphere and ionosphere and their interaction with the solar wind: an overview. In Baugher, SW, Hunten, DM, Phillips, R, (eds), Venus II Geology, Geophysics, Atmosphere, and Solar Wind Environment. Tucson: University of Arizona Press. pp. 331.Google Scholar
Donahue, DT, Hoffman, JJ, Hodges, RR Jr. and Watson, AJ (1982) Venus was wet: a measurement of the ratio of D/H. Science 216, 630633.CrossRefGoogle Scholar
do Nascimento, Jr. J-D, Vidotto, AA, Petit, P, Folsom, C, Castro, M, Marsden, SC, Morin, J, de Mello GF, Porto, Meibom, S, Jeffers, SV, Guinan, E and Ribas, I (2016) Magnetic field and wind of kappa Ceti: toward the planetary habitability of the young Sun when life arose on earth. ApJ Letters 820, L15.CrossRefGoogle Scholar
Domagal-Goldman, SD, Segura, A, Claire, MW, Robinson, TD and Meadows, VS (2014) Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. The Astrophysical Journal 792, 901904.CrossRefGoogle Scholar
Donati, J-F and Brown, SF (1997) Zeeman-Doppler imaging of active stars. V. Sensitivity of maximum entropy magnetic maps to field orientation. Astronomy & Astrophysics 326, 11351142.Google Scholar
Dong, CF, Ma, Y, Bougher, SW, Toth, G, Nagy, AF, Halekas, JS, Dong, Y, Curry, SM, Luhmann, JG, Brain, D, Connerney, JEP, Espley, J, Mahaffy, P, Benna, M, McFadden, JP, Mitchell, DL, DiBraccio, GA, Lillis, RJ, Jakosky, BM and Grebowsky, JM (2015a) Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters 42, 91039112.CrossRefGoogle Scholar
Dong, CF, Bougher, SW, Ma, Y, Toth, G, Lee, Y, Nagy, AF, Tenishev, V, Pawlowski, DJ, Combi, MR and Najib, D (2015b) Solar wind interaction with the Martian upper atmosphere: crustal field orientation, solar cycle, and seasonal variations. Journal of Geophysical Research 120, 78577872.Google Scholar
Dong, CF, Lingam, M, Ma, YJ and Cohen, O (2017) Is Proxima Centauri B habitable? A study of atmospheric loss. ApJ Letters 837, L26.CrossRefGoogle Scholar
Dong, CF, Jin, M, Lingam, M, Airapetian, VS, Ma, YJ and van der Holst, B (2018) Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proceedings of the National Academy of Sciences 115, 260265.CrossRefGoogle ScholarPubMed
Dorn, C, Noack, L and Rozel, AB (2018) Outgassing on stagnant-lid super-Earths. Astronomy & Astrophysics 614, A18A38.CrossRefGoogle Scholar
Dorn, C, Rozel, A and Noack, L (2017) Outgassing of stagnant-lid planets. 19th EGU General Assembly, EGU2017, proceedings from the conference held 23–28 April, 2017 in Vienna, Austria, p. 15513.Google Scholar
Dubinin, E, Fraenz, M, Pätzold, M, McFadden, J, Halekas, JS, DiBraccio, GA, Connerney, JEP, Eparvier, F, Brain, D, Jakosky, BM, Vaisberg, O and Zelenyi, L (2017) The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. Journal of Geophysical Research: Space Physics 122, 1,28511,301.Google Scholar
Dubinin, E, Fraenz, M, Pätzold, M, McFadden, J, Halekas, JS, Connerney, JEP, Jakosky, BM, Vaisberg, O and Zelenyi, L (2018) Martian ionosphere observed by MAVEN. 3. Influence of solar wind and IMF on upper ionosphere. Planetary and Space Science 160, 5665.CrossRefGoogle Scholar
Duru, F, Gurnett, DA, Morgan, DD, Halekas, , Frahm, JRA, Lundin, R, Dejong, W, Ertl, C, Venable, C, Wilkinson, AC, Fraenz, M, Nemec, F, Connerney, JEP, Espley, JR, Larson, DJD, Winningham, JD, laut, J and Mahaffy, PR (2015) Response of the Martian ionosphere to solar activity including SEPs and ICMEs in a two-week period starting on 25 February 2015. Planetary and Space Science 145, 2837.CrossRefGoogle Scholar
Edberg, NJT, Nilsson, H, Futaana, Y, Stenberg, G, Lester, M, Cowley, SWH, Luhmann, JG, McEnulty, TR, Opgenoorth, HJ, Fedorov, A, Barabash, S and Zhang, TL (2011) Atmospheric erosion of Venus during stormy space weather. Journal of Geophysical Research 116, A9.CrossRefGoogle Scholar
Eddy, JA (1976) The maunder minimum. Science 192, 11891202.CrossRefGoogle ScholarPubMed
Edson, A, Lee, S, Bannon, P, Kasting, JF and Pollard, D (2011) Atmospheric circulations of terrestrial planets orbiting low-mass stars. Icarus 212, 113.CrossRefGoogle Scholar
Egorova, T, Rozanov, E, Ozolin, Y, Shapiro, A, Calisto, M, Peter, Th and Schmutz, W (2011) The atmospheric effects of October 2003 solar proton event simulated with the chemistry-climate model SOCOL using complete and parameterized ion chemistry. Journal of Atmospheric and Solar-Terrestrial Physics 73, 356365.CrossRefGoogle Scholar
Elkins-Tanton, LT (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth and Planetary Science Letters 271, 181.CrossRefGoogle Scholar
Elkins-Tanton, LT (2012) Magma oceans in the inner Solar System. Annual Review of Earth and Planetary Sciences 40, 113139.CrossRefGoogle Scholar
Elkins-Tanton, LT and Seager, S (2008) Ranges of atmospheric mass and composition of super-earth exoplanets. The Astrophysical Journal 685, 1237.CrossRefGoogle Scholar
Emslie, AG, Dennis, BR, Shih, AY, Chamberlin, PC, Mewaldt, RA, Moore, CS, Share, GH, Vourlidas, A and Welsch, BT (2012) Global energetics of thirty eight large solar eruptive events. The Astrophysical Journal 759, 71.CrossRefGoogle Scholar
Erkaev, NV, Lammer, H, Elkins-Tanton, LT, Stökl, A, Odert, P, Marcq, E, Dorfi, EA, Kislyakova, KG, Kulikov, Yu. N, Leitzinger, M and Güdel, M (2014) Escape of the Martian protoatmosphere and initial water inventory. Planetary and Space Science 98, 106119.CrossRefGoogle ScholarPubMed
Ertel, S, Defrere, D, Hinz, P, Mennesson, B, Kennedy, GM, Danchi, WC, Gelino, C, Hill, JM, Hoffmann, WF, Rieke, G, Shannon, A, Spalding, E, Stone, JM, Vaz, A, Weinberger, AJ, Willems, P, Absil, O, Arbo, P, Bailey, VP, Beichman, C, Bryden, G, Downey, EC, Durney, O, Esposito, S, Gaspar, A, Grenz, P, Haniff, CA, Leisenring, JM, Marion, L, McMahon, TJ, Millan-Gabet, R, Montoya, M, Morzinski, KM, Pinna, E, Power, J, Puglisi, A, Roberge, A, Serabyn, E, Skemer, AJ, Stapelfeldt, K, Su, KYL, Vaitheeswaran, V and Wyatt, MC (2018a) The HOSTS survey – exozodiacal dust measurements for 30 stars. The Astrophysical Journal 155, 194.Google Scholar
Ertel, S, Kennedy, GM and Defrere, D (2018b) The HOSTS survey for exo-zodiacal dust: preliminary results and future prospects. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10698.Google Scholar
Fairfield, DH (1971) Average and unusual locations for the Earth's magnetopause and bow shock. Journal of Geophysical Research 76, 67006716.CrossRefGoogle Scholar
Falkowski, PG and Isozaki, Y (2008) Science 322, 540542.CrossRefGoogle Scholar
Favata, F and Schmitt, JHMM (1999) Spectroscopic analysis of a super-hot giant flare observed on Algol by BeppoSAX on 30 August 1997. Astronomy & Astrophysics 350, 900916.Google Scholar
Ferraz-Mello, S, Rodríguez, A and Hussmann, H (2008) Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celestial Mechanics and Dynamical Astronomy 101, 171201.CrossRefGoogle Scholar
Feulner, G (2012) The faint young Sun problem. Reviews of Geophysics 50, 2.CrossRefGoogle Scholar
Fischer, D and the LUVOIR team (2018) LUVOIR Mission Concept Study Interim Report, arXiv:1809.09668.Google Scholar
Fletcher, L, Dennis, BR, Hudson, HS, Krucker, S, Phillips, K, Veronig, A, Battaglia, M, Bone, L, Caspi, A, Chen, Q, Gallagher, P, Grigis, PT, Ji, H, Liu, W, Milligan, RO and Temmer, M (2011) An observational overview of solar flares. Space Science Reviews 159, 19106.CrossRefGoogle Scholar
Foley, BJ (2019) Habitability of earth-like stagnant lid planets: climate evolution and recovery from snowball states. The Astrophysical Journal 875, 20.CrossRefGoogle Scholar
Foley, BJ, Bercovici, D and Landuyt, W (2012) The conditions for plate tectonics on super-Earths: inferences from convection models with damage. Earth and Planetary Science Letters 331–332, 281290.CrossRefGoogle Scholar
Folsom, CP, Bouvier, J, Petit, P, Lèbre, A, Amard, L, Palacios, A, Morin, J, Donati, J-F and Vidotto, AA (2018) The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250–650 Myr). Monthly Notices of the Royal Astronomical Society 474, 49564987.CrossRefGoogle Scholar
Forbes, TE (2000) A review on the genesis of coronal mass ejections. Journal of Geophysical Research-Atmospheres 105, 2315323166.CrossRefGoogle Scholar
Forget, F, Wordsworth, R, Millour, E, Madeleine, J-B, Kerber, L, Leconte, J, Marcq, E and Haberle, RM (2013) 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus 222, 8199.CrossRefGoogle Scholar
France, K, Loyd, ROP, Youngblood, A, Brown, A, Schneider, P, Christian, Hawley, Suzanne, L, Froning, , Cynthia, S, Jeffrey, Linsky, L, Aki, Roberge, Buccino, Andrea, P, Davenport, , James, RA, Fontenla, , Juan, M, Kaltenegger, Lisa, Kowalski, , Adam, F, Mauas, , Pablo, JD, Miguel, Yamila, Redfield, Seth, Rugheimer, Sarah, Tian, Feng, Vieytes, , Mariela, C, Walkowicz, , Lucianne, M, Weisenburger, and Kolby, L (2016) The MUSCLES treasury survey. I. Motivation and overview. The Astrophysical Journal 820, 89113.CrossRefGoogle Scholar
France, K, Arulanantham, N, Fossati, L, Lanza, AF, Loyd, ROP, Redfield, S and Schneider, PC (2018) Far-ultraviolet activity levels of F, G, K, and M Dwarf exoplanet host stars. The Astrophysical Journal Supplement Series 239, 1640.CrossRefGoogle Scholar
Franciosini, E, Pallavicini, R and Tagliaferri, G (2001) BeppoSAX observation of a large long-duration X-ray flare from UX Arietis. Astronomy and Astrophysics 375, 196204.CrossRefGoogle Scholar
Fujii, Y, Angerhausen, D, Deitrick, R, Domagal-Goldman, S, Grenfell, JL, Hori, Y, Kane, SR, Palle, E, Rauer, H, Siegler, N, Stapelfeldt, K, Stevenson, KB (2017) Exoplanet biosignatures: observational prospects. Astrobiology 18, 739778.CrossRefGoogle Scholar
Fulton, BJ and Petigura, ER (2018) The California-Kepler survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the planet radius gap. The Astronomical Journal 156, 264276.CrossRefGoogle Scholar
Fulton, BJ, Petigura, EA, Howard, AW, Isaacson, H, Marcy, GW, Cargile, PA, Hebb, L, Weiss, LM, Johnson, JA, Morton, TD, Sinukoff, E, Crossfield, IJM and Hirsch, LA (2017) The California-Kepler survey. III. A gap in the radius distribution of small planets. The Astronomical Journal 154, 109127.CrossRefGoogle Scholar
Fuselier, SA, Burch, JL, Mukherjee, J, Genestreti, KJ, Vines, SK, Gomez, R, Goldstein, J, Trattner, KJ, Petrinec, SM, Lavraud, B and Strangeway, RJ (2017) Magnetospheric ion influence at the dayside magnetopause. Journal of Geophysical Research: Space Physics 122, 86178631.Google Scholar
Futaana, Y, Barabash, S, Yamauchi, M, McKenna-Lawlor, S, Lundin, R, Luhmann, JG, Brain, D, Carlsson, E, Sauvaud, J-A, Winningham, JD, Frahm, RA, Wurz, P, Holmström, M, Gunell, H, Kallio, E, Baumjohann, W, Lammer, H, Sharber, JR, Hsieh, KC, Andersson, H, Grigoriev, A, Brinkfeldt, K, Nilsson, H, Asamura, K, Zhang, TL, Coates, AJ, Linder, DR, Kataria, DO, Curtis, CC, Sandel, BR, Fedorov, A, Mazelle, C, Thocaven, J-J, Grande, M, Koskinen, , Hannu, EJ, Sales, T, Schmidt, W, Riihela, P, Kozyra, J, Krupp, N, Woch, J, Fränz, M, Dubinin, E, Orsini, S, Cerulli-Irelli, R, Mura, A, Milillo, A, Maggi, M, Roelof, E, Brandt, P, Szego, K, Scherrer, J and Bochsler, P (2008) Mars Express and Venus Express multi-point observa- tions of geoeffective solar flare events in December 2006. Planetary and Space Science 56, 873880.CrossRefGoogle Scholar
Fu, R, O'Connell, RJ and Sasselov, DD (2010) The interior dynamics of water planets. Astrophysical Journal 708, 13261334.CrossRefGoogle Scholar
Fu, S, Jiang, Y, Vladimir Airapetian, V, Hu, J, Li, G and Zank, G (2019) Effect of star rotation rates on the characteristics of energetic particle events. accepted for publication in Astrophysical Journal Letters.CrossRefGoogle Scholar
Gaidos, E, Conrad, CP, Manga, M and Hernlund, J (2010) Thermodynamic limits on magnetodynamos in rocky exoplanets. The Astrophysical Journal 718, 596609.CrossRefGoogle Scholar
Gallet, F and Bouvier, J (2013) Improved angular momentum evolution model for solar-like starts. Astronomy & Astrophysics 556, A36.CrossRefGoogle Scholar
Garcia-Sage, K, Glocer, A, Drake, JJ, Gronoff, G and Cohen, O (2017) On the magnetic protection of the atmosphere of Proxima Centauri b. The Astrophysical Journal Letters 844, L13, 24.CrossRefGoogle Scholar
Garraffo, C, Drake, J and Cohen, O (2016) The space weather of Proxima Centauri b. The Astrophysical Journal 833, 6.CrossRefGoogle Scholar
Gaudi, BS (2018) HabEx: Habitable Exoplanet Observatory Interim Report, Scholar
Ghoshtagore, RN and Coble, RL (1966) Self-diffusion in silicon carbide. Physical Review 143, 623626.CrossRefGoogle Scholar
Gillmann, C, Golabek, GJ and Tackley, P (2016) Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295312.CrossRefGoogle Scholar
Gillon, M, Jehin, E, Lederer, SM, Delrez, L, de Wit, J, Burdanov, A, Van Grootel, V, Burgasser, AJ, Triaud, AHMJ, Opitom, C, Demory, B, Sahu, DK, Gagliuffi, DB, Magain, P and Queloz, D (2016) Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221224.CrossRefGoogle ScholarPubMed
Gillon, M, Triaud, AH, Demory, BO, Jehin, E, Agol, E, Deck, KM and Bolmont, E (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456460.CrossRefGoogle ScholarPubMed
Glocer, A, Kitamura, N, Toth, G and Gombosi, T (2012) Modeling solar zenith angle effects on the polar wind. Journal of Geophysical Research 117, A4, CiteID A04318.CrossRefGoogle Scholar
Glocer, A, Khazanov, G and Liemohn, M (2017) Photoelectrons in the quiet polar wind. Journal of Geophysical Research: Space Physics 122, 67086726.Google Scholar
Glocer, A, Cohen, O, Airapetian, VS, Garcia-Sage, K, Gronoff, G, Kang, S-B and Danchi, W (2018) Modeling the Upper Atmospheres of Exoplanets: Energy Deposition and Escape. European Planetary Science Congress 2018, held 16–21 September 2018 at TU Berlin, Berlin, Germany, id. EPSC2018-589.Google Scholar
Goldblatt, C, Claire, MW, Lenton, TM, Matthews, AJ, Watson, AJ and Zahnle, KJ (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience 2, 891896.CrossRefGoogle Scholar
González-Galindo, F, Chaufray, J-Y, López-Valverde, MA, Gilli, G, Forget, F, Leblanc, F, Modolo, R, Hess, S and Yagi, M (2013) Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research: Planets 118, 21052123.Google Scholar
Gopalswamy, N (2010) Coronal mass ejections and solar radio emissions. In Rucker, HO, Kurth, WS, Louarn, P and Fischer, G (eds), Planetary Radio Emissions VII: Proc. of the 7th International Workshop on Planetary, Solar and Heliospheric Radio Emissions (PRE VII), held at Graz, Austria, September 15–17, Austrian Academy of Sciences, Graz, pp. 325342, 2011.Google Scholar
Gopalswamy, N, Xie, H, Mäkelä, P, Yashiro, S, Akiyama, S, Uddin, W, Srivastava, AK, Joshi, NC, Chandra, R, Manoharan, PK, Mahalakshmi, K, Dwivedi, VC, Jain, R, Awasthi, AK, Nitta, NV, Aschwanden, MJ and Choudhary, DP (2013) Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections. Advances in Space Research 51, 19811989.CrossRefGoogle Scholar
Gopalswamy, N (2016) History and development of coronal mass ejections as a key player in solar terrestrial relationship. JGR Letters 3, 8.Google Scholar
Gopalswamy, N (2017) Extreme solar eruptions and their space weather consequences. In Buzulukova, N (ed.), Extreme Events in the Geospace: Origins, Predictability and Consequences. Amsterdam: Elsevier, pp. 3763.Google Scholar
Gopalswamy, N, Yashiro, S, Liu, Y, Michalek, G, Vourlidas, A, Kaiser, ML and Howard, RA (2005) Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions. Journal of Geophysical Research 110, A09S15.CrossRefGoogle Scholar
Gopalswamy, N, Akiyama, S and Yashiro, S (2009) Major solar flares without coronal mass ejections, Universal Heliophysical Processes. Proceedings of the International Astronomical Union, IAU Symposium, vol. 257, pp. 283–286.Google Scholar
Gopalswamy, N, Akiyama, S, Yashiro, S and Mäkelä, P (2010) Coronal mass ejections from sunspot and non-sunspot regions. In Hasan, SS and Rutten, RJ (eds), Magnetic Coupling Between the Interior and Atmosphere of the Sun. Berlin: Springer, pp. 289.CrossRefGoogle Scholar
Gopalswamy, N, Akiyama, S, Mäkelä, P, Yashiro, S, Xie, H, Thakur, N and Kahler, SW (2015) Large solar energetic particle events associated with filament eruptions outside of active regions. The Astrophysical Journal 806, 822.CrossRefGoogle Scholar
Gopalswamy, N, Yashiro, S and Akiyama, S (2016) Unusual polar conditions in solar cycle 24 and their implications for cycle 25. The Astrophysical Journal 823, L15.CrossRefGoogle Scholar
Gray, CL, Chanover, NJ, Slanger, TG and Molaverdikhani, K (2014) The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577 Å oxygen green line. Icarus 233, 342347.CrossRefGoogle Scholar
Green, LM, Török, T, Vršnak, B, Manchester, W and Veronig, A (2018) The origin, early evolution and predictability of solar eruptions. Space Science Reviews 214, 4697.CrossRefGoogle Scholar
Greene, TP, Line, MR, Montero, C, Fortney, JJ, Lustig-Yaeger, J and Luther, K (2016) Characterizing transiting exoplanet atmospheres with JWST. The Astrophysical Journal 836, 17.CrossRefGoogle Scholar
Grenfell, JL (2017) A review of exoplanetary biosignatures. Physics Reports 713, 117.CrossRefGoogle Scholar
Grenfell, JL, Stracke, B, von Paris, P, Patzer, B, Titz, R, Segura, A and Rauer, H (2007) The response of atmospheric chemistry on earthlike planets around F, G and K stars to small variations in orbital distance. Planetary and Space Science 55, 661667.CrossRefGoogle Scholar
Grenfell, JL, Grießmeier, J-M, von Paris, P, Patzer, A, Beate C, , Lammer, H, Stracke, B, Gebauer, S, Schreier, F and Rauer, H (2012) Response of atmospheric biomarkers to NOx- induced photochemistry generated by stellar cosmic rays for earth-like pla- nets in the habitable zone of M dwarf stars. Astrobiology 12, 11091122.CrossRefGoogle Scholar
Grenfell, JL, Gebauer, S, Godolt, M, Palczynski, K, Rauer, H, Stock, J, von Paris, P, Lehmann, R and Selsis, F (2013) Potential biosignatures in super-earth atmospheres II. Photochemical responses. Astrobiology 13, 415438.CrossRefGoogle ScholarPubMed
Grenfell, JL, Gebauer, S, v. Paris, P, Godolt, M, Rauer, H (2014) Sensitivity of biosignatures on Earth-like planets orbiting in the habitable zone of cool M-dwarf Stars to varying stellar UV radiation and surface biomass emissions. Planetary and Space Science 98, 6676.CrossRefGoogle Scholar
Grenfell, JL, Rauer, H, Selsis, F, Rauer, Heike, Selsis, Franck, Kaltenegger, Lisa, Beichman, Charles, Danchi, William, Eiroa, Carlos, Fridlund, Malcolm, Henning, Thomas, Herbst, Tom, Lammer, Helmut, Léger, Alain, Liseau, René, Lunine, Jonathan, Paresce, Francesco, Penny, Alan, Quirrenbach, Andreas, Röttgering, Huub, Schneider, Jean, Stam, Daphne, Tinetti, Giovanna and White, Glenn J (2010) Co-Evolution of atmospheres, life, and climate. Astrobiology 10, 77.CrossRefGoogle ScholarPubMed
Grenfell, JL, Gebauer, S, von Paris, P, Godolt, M and Hedelt, P (2011) Sensitivity of biomarkers to changes in chemical emissions in the Earth's Proterozoic atmosphere. Icarus 211, 8188.CrossRefGoogle Scholar
Groeller, H, Lichtenegger, H, Lammer, H and Shematovich, VI (2014) Hot oxygen and carbon escape from the Martian atmosphere. Planetary and Space Science 98, 93105.CrossRefGoogle Scholar
Gronoff, G, Norman, RB and Mertens, CJ (2015) Computation of cosmic ray ionization and dose at Mars. I: a comparison of HZETRN and Planetocosmics for proton and alpha particles. Advances in Space Research 55, 17991805.CrossRefGoogle Scholar
Güdel, M (2007) The sun in time: activity and environment. Living Reviews in Solar Physics 4, article id. 3.CrossRefGoogle Scholar
Güdel, M and Nazé, Y (2009) X-ray spectroscopy of stars. Astronomy and Astrophysics Review 17, 309.CrossRefGoogle Scholar
Güdel, M, Guinan, EF and Skinner, SL (1997) The X-Ray Sun in time: a study of the long-term evolution of coronae of solar-type stars. The Astrophysical Journal 483, 947.CrossRefGoogle Scholar
Guo, J, Dumbović, M, Wimmer-Schweingruber, RF, Robert, F, Temmer, Manuela, Lohf, Henning, Wang, Yuming, Veronig, , Astrid, Hassler, Donald, M, Mays, Leila M, Zeitlin, Cary, Ehresmann, Bent, Witasse, Olivier, Freiherr von Forstner, Johan L, Heber, Bernd, Holmström, Mats and Posner, Arik (2018) Modeling the evolution and propagation of 10 September 2017 CMEs and SEPs arriving at Mars constrained by remote sensing and in situ measurement. Space Weather 16, 11561169.CrossRefGoogle Scholar
Gurtner, R, Desorgher, L, Flückiger, EO and Moser, MR (2005) Simulation of the interaction of space radiation with the Martian atmosphere and surface. Advances in Space Research 36, 21762181.CrossRefGoogle Scholar
Haider, SA, Singh, V, Choksi, VR, Maguire, WC and Verigin, MI (2007) Calculated densities of H3O+(H2O)n,NO2- (H2O)n, CO3- (H2O)n and electron in the nighttime ionosphere of Mars: Impact of solar wind electron and galactic cosmic rays. Journal of Geophysical Research 112, A12309.CrossRefGoogle Scholar
Hale, GE (1908) On the probable existence of a magnetic field in Sun-spots. The Astrophysical Journal 28, 315.CrossRefGoogle Scholar
Hamano, K, Abe, Y and Genda, H (2013) Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607610.CrossRefGoogle ScholarPubMed
Hart, MH (1979) Habitable zones about main sequence stars. Icarus 37, 351.CrossRefGoogle Scholar
Hart, RA, Russell, CT and Zhang, T (2018) Statistics and Energetics of Lightning on Venus. 20th EGU General Assembly, EGU2018, Proceedings from the conference held 4–13 April, 2018 in Vienna, Austria, p. 10831.Google Scholar
Heavens, NG, Kleinböhl, A, Chaffin, MS, Halekas, JS, Kass, DM, Hayne, PO, McCleese, DJ, Piqueux, S, Shirley, JH and Schofield, JT (2018) Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy 2, 126132.CrossRefGoogle Scholar
Heller, R and Barnes, R (2013) Exomoon habitability constrained by illumination and tidal heating. Astrobiology 13, 1846.CrossRefGoogle ScholarPubMed
Henning, WG and Hurford, T (2014) Tidal heating in multilayered terrestrial exoplanets. The Astrophysical Journal 789, 30.CrossRefGoogle Scholar
Henning, WG, O'Connell, RJ and Sasselov, DD (2009) Tidally heated terrestrial exoplanets: viscoelastic response models. The Astrophysical Journal 707, 1000.CrossRefGoogle Scholar
Herschel, W (1801) Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philosophical Transactions of the Royal Society A 91, 265318.Google Scholar
Hinz, PM, Defrere, D, Skemer, A, Bailey, V, Stone, J, Spalding, E, Vaz, A, Pinna, E, Puglisi, A, Esposito, S, Montoya, M, Downey, E, Leisenring, J, Durney, O, Hoffmann, W, Hill, J, Millan-Gabet, R, Mennesson, B, Danchi, W, Morzinski, K, Grenz, P, Skrutskie, M and Ertel, S (2016) Overview of LBTI: a multipurpose facility for high spatial resolution observations, in optical and infrared interferometry and imaging V. Proceedings of the SPIE 9907, 990704.Google Scholar
Hirose, K, Morard, G, Sinmyo, R, Umemoto, K, Huernlund, J, Heffrich, G and Labrosse, S (2017) Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature 543, 99102.CrossRefGoogle ScholarPubMed
Hodgson, R (1859) On a curious appearance seen in the Sun. Monthly Notices of the Royal Astronomical Society 20, 1516.CrossRefGoogle Scholar
Holloway, AM and Wayne, RP (2010) Atmospheric Chemistry. UK: Royal Society of Chemistry.Google Scholar
Houdebine, ER, Foing, BH and Rodono, M (1990) Dynamics of flares on late-type dMe stars. I. Flare mass ejections and stellar evolution. Astronomy & Astrophysics 238, 249255.Google Scholar
Huang, SS (1960) Life outside the Solar System. Scientific American 202, 55.CrossRefGoogle Scholar
Hud, NV (2018) Searching for lost nucleotides of the pre-RNA world with a self-refining model of early Earth. Nature Communications 9, Article #5171.CrossRefGoogle ScholarPubMed
Hüttig, C and Stemmer, K (2008) Finite volume discretization for dynamic viscosities on Voronoi grids. Physics of the Earth and Planetary Interiors 171, 137146.CrossRefGoogle Scholar
Jackman, CH, Marsh, DR, Vitt, FM, Roble, RG, Randall, CE, Bernath, PF, Funke, B, López-Puertas, M, Versick, S, Stiller, GP, Tylka, AJ and Fleming, EL (2011) Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmospheric Chemistry and Physics 11, 61536166.CrossRefGoogle Scholar
Jackman, CH, Frederick, JE and Stolarski, RS (1980) Production of odd nitrogen in the stratosphere and mesosphere – an intercomparison of source strengths. Journal of Geophysical Research 85, 74957505.CrossRefGoogle Scholar
Jackman, CH, DeLand, MT, Labow, GJ, Fleming, EL, Weisenstein, DK, Ko, MKW, Sinnhuber, M and Russell, JM (2005) Neutral atmospheric influences of the solar proton events in October–November 2003. Journal of Geophysical Research 110, A9.Google Scholar
Jackman, CH, Deland, MT, Labow, GJ, Fleming, EL and López-Puertas, M (2006) Satellite measurements of middle atmospheric impacts by solar proton events in solar cycle 23. Space Science Reviews 125, 381391.CrossRefGoogle Scholar
Jackman, CH, Marsh, DR, Vitt, FM, Garcia, RR, Fleming, EL, Labow, GJ and Stiller, GP (2008) Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmospheric Chemistry and Physics 8, 765785.CrossRefGoogle Scholar
Jackson, B, Barnes, R and Greenberg, R (2008) Tidal heating of terrestrial extrasolar planets and implications for their habitability. Monthly Notices of the Royal Astronomical Society 391, 237245.CrossRefGoogle Scholar
Jakosky, BM, Grebowsky, JM, Luhmann, JG, Connerney, J, Eparvier, F, Ergun, R, Halekas, J, Larson, D, Mahaffy, P, McFadden, J, Mitchell, DF, Schneider, N, Zurek, R, Bougher, S, Brain, D, Ma, YJ, Mazelle, C, Andersson, L, Andrews, D, Baird, D, Baker, D, Bell, JM, Benna, M, Chaffin, M, Chamberlin, P, Chaufray, Y-Y, Clarke, J, Collinson, G, Combi, M, Crary, F, Cravens, T, Crismani, M, Curry, S, Curtis, D, Deighan, J, Delory, G, Dewey, R, DiBraccio, G, Dong, C, Dong, Y, Dunn, P, Elrod, M, England, S, Eriksson, A, Espley, J, Evans, S, Fang, X, Fillingim, M, Fortier, K, Fowler, CM, Fox, J, Gröller, H, Guzewich, S, Hara, T, Harada, Y, Holsclaw, G, Jain, SK, Jolitz, R, Leblanc, F, Lee, CO, Lee, Y, Lefevre, F, Lillis, R, Livi, R, Lo, D, Mayyasi, M, McClintock, W, McEnulty, T, Modolo, R, Montmessin, F, Morooka, M, Nagy, A, Olsen, K, Peterson, W, Rahmati, A, Ruhunusiri, S, Russell, CT, Sakai, S, Sauvaud, J-A, Seki, K, Steckiewicz, M, Stevens, M, Stewart, AIF, Stiepen, A, Stone, S, Tenishev, V, Thiemann, E, Tolson, R, Toublanc, D, Vogt, M, Weber, T, Withers, P, Woods, T and Yelle, R (2015) MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science 350, 6261.CrossRefGoogle Scholar
Jakosky, BM and Phillips, RJ (2001) Mars’ volatile and climate history. Nature 412, 237244.CrossRefGoogle ScholarPubMed
Janvier, M, Aulanier, G and Démoulin, P (2015) From coronal observations to MHD simulations, the building blocks for 3D models of solar flares (Invited Review). Solar Physics 290, 34253456.CrossRefGoogle Scholar
Jeans, JH (1925) The Dynamic Theory of Gases. London: Cambridge Univ. Press.Google Scholar
Johns-Krull, CM (2007) The magnetic fields of classical T Tauri Stars. The Astrophysical Journal 664, 975985.CrossRefGoogle Scholar
Johnstone, CP, Güdel, M, Stökl, A, Lammer, H, Tu, L, Kislyakova, KG, Lüftinger, T, Odert, P, Erkaev, NV and Dorfi, EA (2015a) The Evolution of Stellar Rotation and the Hydrogen Atmospheres of Habitable-zone Terrestrial Planets. The Astrophysical Journal Letters 815, L12L17.CrossRefGoogle Scholar
Johnstone, CP and Güdel, M (2015) The coronal temperatures of low-mass main-sequence stars. Astronomy & Astrophysics 578, id. A129.CrossRefGoogle Scholar
Johnstone, CP, Güdel, M, Brott, I and Lüftinger, T (2015b) Stellar winds on the main-sequence – II. The evolution of rotation and winds. Astronomy & Astrophysics 577, id A28.CrossRefGoogle Scholar
Johnstone, CP, Güdel, M, Lüftinger, T, Toth, G and Brott, I (2015c) Stellar winds on the main-sequence – I. Wind model. Astronomy & Astrophysics 577, id A27.CrossRefGoogle Scholar
Johnstone, CP, Güdel, M, Lammer, H and Kislyakova, KG (2018) Upper atmospheres of terrestrial planets: carbon dioxide cooling and the Earth's thermospheric evolution. Astronomy & Astrophysics 617, A107, 36.CrossRefGoogle Scholar
Johnstone, CP, Khodachenko, ML, Lüftinger, T, Kislyakova, KG, Lammer, H and Güdel, M (2019) Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars. Astronomy & Astrophysics 624, L10.CrossRefGoogle Scholar
Jovanovic, N, Martinache, F, Guyon, O, Clergeon, C, Singh, G, Kudo, T, Garrel, V, Newman, K, Doughty, D, Lozi, J, Males, J, Minowa, Y, Hayano, Y, Takato, N, Morino, J, Kuhn, J, Serabyn, E, Norris, B, Tuthill, P, Schworer, G, Stewart, P, Close, L, Huby, E, Perrin, G, Lacour, S, Gauchet, L, Vievard, S, Murakami, N, Oshiyama, F, Baba, N, Matsuo, T, Nishikawa, J, Tamura, M, Lai, O, Marchis, F, Duchene, G, Kotani, T and Woillez, J (2015) The Subaru Coronagraphic extreme adaptive optics system: enabling high-contrast imaging on solar-system scales. Publications of the Astronomical Society of the Pacific 127, 890.CrossRefGoogle Scholar
Joyce, GF (1994) Forward. In Deamer DW and Fleischaker GR (eds), Origins of Life: The Central Concepts, Boston: Jones and Bartlett Publishers, pp. xixii.Google Scholar
Kallenrode, M-B (2003) Current views on impulsive and gradual solar energetic particle events. Journal of Physics G: Nuclear and Particle Physics 29, 965981.CrossRefGoogle Scholar
Kaltenegger, L and Traub, WA (2009) Transits of earth-like planets. The Astrophysical Journal 698, 519527.CrossRefGoogle Scholar
Kaltenegger, L, Traub, WA and Jucks, KW (2007) Spectral evolution of an earth-like planet. The Astrophysical Journal 658, 598616.CrossRefGoogle Scholar
Kaltenegger, L, Henning, WG and Sasselov, DD (2010) Detecting volcanism on extrasolar planets. The Astronomical Journal 140, 1370.CrossRefGoogle Scholar
Kaltenegger, L, Sasselov, D and Rugheimer, S (2013) Water-planets in the habitable zone: atmospheric chemistry, observable features, and the case of Kepler-62e and -62f. ApJ Letters 775, L47L52.CrossRefGoogle Scholar
Karato, S-I (2011) Rheological structure of the mantle of a super-Earth: some insights from mineral physics. Icarus 212, 1423.CrossRefGoogle Scholar
Kargel, JS, Kaye, JZ, Head, JW, Marion, GM, Sassen, R, Crowley, JK, Ballesteros, OP, Grant, SA and Hogenboom, DL (2000) Europa's crust and ocean: origin, composition, and the prospects for life. Icarus 148, 226265.CrossRefGoogle Scholar
Karoff, C, Knuden, MF, De Cat, P, Bonanno, A, Fogtmann-Schulz, A, Fu, J, Frasca, A, Inceoglu, F, Olsen, Y, Zhang, Y, Hou, Y, Wang, Y, Shi, J and Zhang, W (2016) Observational evidence for enhanced magnetic activity of superflare stars. Nature Communications 7, 11058.CrossRefGoogle ScholarPubMed
Karpen, JT, Antiochos, SK and DeVore, CR (2012) The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. The Astrophysical Journal 760, 8195.CrossRefGoogle Scholar
Kasting, JF (1988) Runaway and moist greenhouse atmospheres and the evolution of earth and Venus. Icarus 74, 472494.CrossRefGoogle ScholarPubMed
Kasting, JF (1990) Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere. Origins of Life and Evolution of the Biosphere 20, 199231.CrossRefGoogle Scholar
Kasting, JF (2010) Early earth: faint young sun redux. Nature 464, 687689.CrossRefGoogle Scholar
Kasting, JF, Toon, OB and Pollack, JB (1988) How climate evolved on the terrestrial planets. Scientific American 258, 9097.CrossRefGoogle Scholar
Kasting, JF, Whitmire, DP and Reynolds, RT (1993) Habitable zones around main sequence stars. Icarus 101, 108128.CrossRefGoogle ScholarPubMed
Kasting, JF, Kopparapu, R, Ramirez, RM and Harman, CE (2014) Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proceedings of the National Academy of Sciences of the United States of America 111, 1264112646.CrossRefGoogle ScholarPubMed
Kay, C, Gopalswamy, N, Reinard, A and Opher, M (2017) Predicting the magnetic field of earth-impacting CMEs. The Astrophysical Journal 835, 117127.CrossRefGoogle Scholar
Kazachenko, MD, Canfield, RC, Longcope, DW and Qiu, J (2012) Predictions of energy and helicity in four major eruptive solar flares. Solar Physics 277, 165183.CrossRefGoogle Scholar
Khazanov, GV, Liemohn, MW and Moore, TE (1997) Photoelectron effects on the self-consistent potential in the collisionless polar wind. Journal of Geophysical Research 102, 75097522.CrossRefGoogle Scholar
Kipping, M, Cameron, C, Hartman, JD, Davenport, JRA, Matthews, JM, Sasselov, D, Rowe, J, Siverd, RJ, Chen, J and Sandford, E (2017) No conclusive evidence for transits of Proxima b in MOST photometry. The Astronomical Journal 153, 115.CrossRefGoogle Scholar
Kirschvink, JL (1992) Late Proterozoic low-latitude global glaciation: the snowball earth. Section 2.3. In Schopf, JW, Klein, C and Des Maris, D (eds), The Proterozoic Biosphere: A Multidisciplinary Study. New York: Cambridge University Press, pp. 5152.Google Scholar
Kislyakova, KG, Johnstone, CP, Odert, P, Erkaev, NV, Lammer, H, Lüftinger, T, Holmström, M, Khodachenko, ML and Güdel, M (2014) Stellar wind interaction and pick-up ion escape of the Kepler-11 ‘super-Earths’. Astronomy & Astrophysics 562, A116A124.CrossRefGoogle Scholar
Kistler, LM, Galvin, AB, Popecki, MA, Simunac, KDC, Farrugia, C, Moebius, E, Lee, MA, Blush, LM, Bochsler, P, Wurz, P, Klecker, B, Wimmer-Schweingruber, RF, Opitz, A, Sauvaud, J-A, Thompson, B and Russell, CT (2010) Escape of O+ through the distant tail plasma sheet. Geophysical Research Letters 37, L21101.CrossRefGoogle Scholar
Kite, ES, Manga, M and Gaidos, E (2009) Geodynamics and rate of volcanism on massive Earth-like planets. The Astrophysical Journal 700, 17321749.CrossRefGoogle Scholar
Kite, ES, Williams, JP, Lucas, A and Aharonson, O (2014) Low paleo pressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nature Geoscience 7, 335339.CrossRefGoogle Scholar
Kitzmann, D (2017) Clouds in the atmospheres of extrasolar planets. Astronomy & Astrophysics 600, A111A119.CrossRefGoogle Scholar
Kivelson, MG and Russell, CT (1995) Introduction to space physics. In Kivelson, MG and Russell, CT (eds), Cambridge, UK: Cambridge University Press, pp. 586. ISBN 0521451043.CrossRefGoogle Scholar
Kleine, T, Münker, C, Mezger, K and Palme, H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952955.CrossRefGoogle ScholarPubMed
Knutson, HA, Charbonneau, D, Allen, LE, Fortney, JJ, Agol, E, Cowan, NB, Showman, AP, Cooper, CS and Megeath, ST (2007) A map of the day–night contrast of the extrasolar planet HD 189733b. Nature 447, 183186.CrossRefGoogle ScholarPubMed
Kobayashi, K, Tsuchiya, M, Oshima, T and Yanagawa, H (1990) Abiotic synthesis of amino acids and imidazole by proton irradiation of simulated primitive Earth atmosphere. Origins of Life and Evolution of the Biosphere 20, 99109.CrossRefGoogle Scholar
Kobayashi, K, Kaneko, T, Saito, Y and Oshima, T (1998) Amino acid production in gas mixtures by high energy particle irradiation. Origins of Life and Evolution of the Biosphere 28, 155165.CrossRefGoogle Scholar
Kobayashi, K, Aoki, R, Kebukawa, Y, Shibata, H, Fukuda, H, Oguri, Y and Airapetian, VS (2017) Roles of Solar Energetic Particles in Production of Bioorganic Compounds in Primitive Earth Atmosphere, XVIIIth International Conference on the Origin of Life, Proceedings of the conference held 16–21 July, 2017 in San Diego, California. LPI Contribution No. 1967, id.4133.Google Scholar
Kobayashi, K, Shibata, H, Fukuda, H, Oguri, Y, Kebukawa, Y, Aoki, R, Kinoshita, M, Kunwar, B, Kawamura, K and Airapetian, VS (2018) Formation of Amino Acid Precursors and Carboxylic acids in the Hadean Earth's Atmosphere by Cosmic Rays and Solar Energetic Particles from the Young Sun. 42nd COSPAR Scientific Assembly, 14–22 July 2018, Pasadena, California, USA, Abstract id. F3.2-20-18.Google Scholar
Koga, KT, Walter, MJ, Nakamura, W and Kobayashi, K (2005) Carbon self-diffusion in a natural diamond. Physical Review B 72, 14.CrossRefGoogle Scholar
Kopparapu, RK, Ramirez, R, Kasting, JF, Eymet, V, Robinson, TD, Mahadevan, S, Terrien, RC, Domagal-Goldman, S, Meadows, V and Deshpande, R (2013) Habitable zones around main-sequence stars: new estimates. The Astrophysical Journal 765, 131.CrossRefGoogle Scholar
Kopparapu, RK, Wolf, ET, Haqq-Misra, J, Yang, J, Kasting, JF, Meadows, V, Terrien, R and Mahadevan, S (2016) The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophysical Journal 819, 114.CrossRefGoogle Scholar
Kopparapu, RK, Wolf, ET, Arney, G, Batalha, NE, Haqq-Misra, J, Grimm, SL and Heng, K (2017) Habitable moist atmospheres on terrestrial planets near the inner edge of the habitable zone around M Dwarfs. Astrophysical Journal 845, 116.CrossRefGoogle Scholar
Korenaga, J (2010) On the likelihood of plate tectonics on super-Earths. Does size matter? The Astrophysical Journal Letters 725, 4346.CrossRefGoogle Scholar
Korenaga, J (2013) Initiation and evolution of plate tectonics on earth: theories and observations. Annual Review of Earth and Planetary Sciences 41, 117151.CrossRefGoogle Scholar
Korenaga, J (2016) Can mantle convection be self-regulated? Science Advances 2, e1601168. DOI: 10.1126/sciadv.1601168.CrossRefGoogle ScholarPubMed
Kraft, RP (1967) Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. The Astrophysical Journal 150, 551.CrossRefGoogle Scholar
Kramar, M, Airapetian, VS and Lin, H (2016) 3D global coronal density structure and associated magnetic field near solar maximum. Frontiers in Astronomy and Space Sciences 3, 2535.CrossRefGoogle Scholar
Kröger, H, Ronning, C, Hofsäss, H, Neumaierb, P, Bergmaier, R, Görgens, L and Dollinger, G (2003) Diffusion in diamond-like carbon. Diamonds and Related Materials 12, 20422050.CrossRefGoogle Scholar
Kuang, W, Shimizu, H, Airapetian, VS, Genova, A, Mazarico, E and Goosens, S (2019) How long will Earth remain habitable? Implications from geomagnetic catastrophe due to inner core growth. Nature Geoscience (submitted).Google Scholar
Kuhn, JR, Berdyugina, SV, Langlois, M, Moretto, G, Thiebaut, E, Harlingen, C and Halliday, D (2014) Looking beyond 30m-class telescopes: the Colossus project. Proceedings of the SPIE, 9145, 61451G, doi:10.1117/12.2056594.Google Scholar
Kuhn, JR, Berdyugina, SV, Capsal, J-F, Gedig, M, Langlois, M, Moretto, G and Thetpraphi, K (2018) The Exo-Life Finder Telescope (ELF): design and beam synthesis concepts. Proceedings of the SPIE, 10700, id. 1070015.CrossRefGoogle Scholar
Kulikov, YN, Lammer, H, Lichtenegger, HIM, Terada, N, Ribas, I, Kolb, C, Langmayr, D, Lundin, R, Guinan, EF, Barabash, S and Biernat, HK (2006) Atmospheric and water loss from early Venus. Planetary and Space Science 54, 14251444.CrossRefGoogle Scholar
Kunze, M, Godolt, M, Langematz, U, Grenfell, JL, Hamann-Reinus, A and Rauer, H (2014) Investigating the early Earth faint young Sun problem with a general circulation model. Planetary and Space Science 98, 7792.CrossRefGoogle Scholar
Labrosse, S (2015) Thermal evolution of the core with a high thermal conductivity. Physics of the Earth and Planetary Interiors 247, 3655.CrossRefGoogle Scholar
Lammer, H, Bredehöft, JH, Coustenis, A, Khodachenko, ML, Kaltenegger, L, Grasset, O, Prieur, D, Raulin, F, Ehrenfreund, P, Yamauchi, M, Wahlund, JE, Grießmeier, JM, Stangl, G, Cockell, CS, Kulikov, Yu. N, Grenfell, JL and Rauer, H (2009) What makes a planet habitable? The Astronomy and Astrophysics Review 17, 181.CrossRefGoogle Scholar
Lammer, H, Güdel, M, Kulikov, Y, Ribas, I, Zaqarashvili, TV, Khodachenko, ML, Kislyakova, KG, Gröller, H, Odert, P, Leitzinger, M, Fichtinger, B, Krauss, S, Hausleitner, W, Holmström, M, Sanz-Forcada, J, Lichtenegger, HIM, Hanslmeier, A, Shematovich, VI, Bisikalo, D, Rauer, H and Fridlund, M (2012) Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution. Earth, Planets and Space 64, 179199.CrossRefGoogle Scholar
Lammer, H, Zerkle, AL, Gebauer, S, Tosi, N, Noack, L, Scherf, M, Pilat-Lohinger, E, Güdel, M, Grenfell, JL, Godolt, M and Nikolaou, A (2018) Origin and evolution of the atmospheres of early Venus, Earth and Mars. The Astronomy and Astrophysics Review 26, 72.CrossRefGoogle Scholar
Langlois, M, Vigan, A, Moutou, C, Sauvage, JF, Dohlen, K, Costille, A, Mouillet, D and Le Mignant, D (2014) Infrared differential imager and spectrograph for SPHERE: performance assessment for on-sky operation. 3071 Proceedings of the SPIE 9147, id. 91479P.CrossRefGoogle Scholar
Larmor, J (1919) How could a rotating body such as the Sun become a magnet? Report of the British Association 87, 159160.Google Scholar
Laskar, J, Joutel, F and Robutel, P (1993) Stabilization of the Earth's obliquity by the Moon. Nature 361, 615.CrossRefGoogle Scholar
Lawson, P, Traub, W and Unwin, S (2009) Exoplanet Community Report, JPL Publication 09-3.Google Scholar
Lawson, PR, Belikov, R, Cash, W, Clampin, M, Glassman, T, Guyon, O, Kasdin, NJ, Kern, BD, Lyon, R, Mawet, D, Moody, D, Samuele, R, Serabyn, E, Sirbu, D and Trauger, J (2013) Survey of experimental results in high-contrast imaging for future exoplanet missions. Proceedings of the SPIE 8864, 88641F.CrossRefGoogle Scholar
Lazio, J, Hallinan, G, Airapetian, V, Brain, DA, Dong, CF, Driscoll, PE, Griessmeier, JM, Farrell, WM, Kasper, JC, Murphy, T, Rogers, LA, Shkolnik, E, Stanley, S, Strugarek, A, Turner, NJ, Wolszczan, A, Zarka, P, Knapp, M, Lynch, CR and Turner, JD (2018) Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability. A white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy; eprint arXiv:1803.06487.Google Scholar
Leconte, J, Forget, F, Charnay, B, Wordsworth, R and Pottier, A (2013a) Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268.CrossRefGoogle Scholar
Leconte, J, Forget, F, Charnay, B, Wordsworth, R, Selsis, F, Millour, E and Spiga, A (2013b) 3D climate modeling of close-in land planets: circulation patterns, climate moist bistability, and habitability. Astronomy & Astrophysics 554, A69A85.CrossRefGoogle Scholar
Leconte, J, Wu, H, Menou, K and Murray, N (2015) Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632635.CrossRefGoogle ScholarPubMed
Le Duigou, JM, Lozi, J, Cassaing, F, Houairi, K, Sorrente, B, Montri, J, Jacquinod, S, Reess, JM, Pham, L, Lhome, E, Buey, T, Hénault, F, Marcotto, A, Girard, P, Mauclert, N, Barillot, M, Coudé du Foresto, V and Ollivier, M (2012) Final results of the PERSEE experiment. Proc. SPIE 8445, Optical and Infrared Interferometry III, 844525.CrossRefGoogle Scholar
Lenardic, A, Jellinek, AM, Foley, B, O'Neill, C and Moore, WB (2016) Climate-tectonic coupling: variations in the mean, 3101 variations about the mean, and variations in mode. Journal of Geophysical Research: Planets 121, 18311864.Google Scholar
Lenardic, A and Crowley, J (2012) On the notion of well-defined tectonic regimes for terrestrial planets in this Solar System and others. The Astrophysical Journal 755, 132143.CrossRefGoogle Scholar
Limpasuvan, V, Hartmann, DL, Thompson, DWJ, Jeev, K and Yung, YL (2005) Stratosphere-troposphere evolution during polar vortex intensification. Journal of Geophysical Research 110, D24101D24115.CrossRefGoogle Scholar
Li, G, Shalchi, A, Ao, X, Zank, G and Verkhoglyadova, OP (2012) Advances in Space Research 49, 1327.CrossRefGoogle Scholar
Lichtenegger, HIM, Lammer, H and Grießmeier, J-M (2010) Aeronomical evidence for higher CO2 levels during Earth's Hadean epoch. Icarus 210, 17.CrossRefGoogle Scholar
Linsky, JL, Fontenla, J and France, K (2014) The intrinsic extreme ultraviolet fluxes of F5 V to M5 V stars. The Astrophysical Journal 780, 61, 11 pp.Google Scholar
Lopez, E and Fortney, JJ (2013) The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. The Astrophysical Journal 776, 212.CrossRefGoogle Scholar
Lovis, C and Fischer, D (2010) Radial velocity techniques for exoplanets. In Seager, S (ed.), Exoplanets. Tucson, AZ: University of Arizona Press, pp. 2753.Google Scholar
Loyd, ROP, France, K, Youngblood, A, Schneider, C, Brown, A, Hu, R, Linsky, J, Froning, CS, Redfield, S, Rugheimer, S and Tian, F (2016) The MUSCLES treasury survey. III. X-ray to infrared Spectra of 11M and K stars hosting planets. The Astrophysical Journal 824, article id. 102.Google Scholar
Luger, R and Barnes, R (2015) Extreme water loss and abiotic O-2 buildup on planets throughout the habitable zones of M Dwarfs. Astrobiology 15, 119143.CrossRefGoogle Scholar
Luger, R, Barnes, R, Lopez, E, Fortney, J, Jackson, B and Meadows, V (2015) Habitable evaporated cores: transforming Mini-Neptunes into super-earths in the habitable zones of M dwarfs. Astrobiology 15, 5788.CrossRefGoogle ScholarPubMed
Luger, R, Sestovic, M, Kruse, E, Grimm, SL, Demory, BO, Agol, E and Burgasser, A (2017) A seven-planet resonant chain in TRAPPIST-1. Nature Astronomy 1, 0129.CrossRefGoogle Scholar
Luhmann, JG and Cravens, TE (1991) Magnetic fields in the ionosphere of Venus. Space Science Reviews 55, 201274.CrossRefGoogle Scholar
Luhmann, JG, Kasprzak, WT and Russell, CT (2007) Space weather at Venus and its potential consequences for atmosphere evolution. Journal of Geophysical Research 112, E4.CrossRefGoogle Scholar
Luhmann, JG, Rogers, LA, Shkolnik, E, Stanley, S, Strugarek, A, Turner, NJ, Wolszczan, A, Zarka, P, Knapp, M, Lynch, CR and Turner, JD (2008) Venus express observations of atmospheric oxygen escape during the passage of several coronal mass ejections. Journal of Geophysical Research 113, E00B04E00B19.CrossRefGoogle Scholar
Luhmann, JG, Dong, CF, Ma, YJ, Curry, SM, Xu, S, Lee, CO, Hara, T, Halekas, J, Li, Y, Gruesbeck, JR, Espley, J, Brain, DA, Russell, CT and Jakosky, BM (2017) Martian magnetic storms. Journal of Geophysical Research 122, 61856209.Google Scholar
Lundin, R, Barabash, S, Holmström, M, Nilsson, H, Futaana, Y, Ramstad, R, Yamauchi, M, Dubinin, E and Fraenz, M (2013) Solar cycle effects on the ion escape from Mars. Geophysical Research Letters 40, 6028–603.CrossRefGoogle Scholar
Lundin, R, Lammer, H and Ribas, I (2007) Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Science Reviews 129, 245278.CrossRefGoogle Scholar
Lynch, BJ, Antiochos, SK, DeVore, CR, Luhmann, JG and Zurbuchen, TH (2008) Topological evolution of a fast magnetic breakout CME in 3-dimensions. The Astrophysical Journal 683, 11921206.CrossRefGoogle Scholar
Lynch, BJ, Antiochos, SK, Li, Y, Luhmann, JG and DeVore, CR (2009) Rotation of coronal mass ejections during eruption. The Astrophysical Journal 697, 19181927.CrossRefGoogle Scholar
Lynch, BJ, Masson, S, Li, Y, DeVore, CR, Luhmann, JG, Antiochos, SK and Fisher, GH (2016) A model for stealth coronal mass ejections. Journal of Geophysical Research: Space Physics 121, 1067710697.Google Scholar
Lynch, BJ, Airapetian, VS, Kazachenko, MD, Lüftinger, T, DeVore, CR and Abbett, WP (2019) Initiation of Carrington-scale Superflares and Coronal Mass Ejections from k 1Ceti. The Astrophysical Journal, accepted.CrossRefGoogle Scholar
Lyons, TW, Reinhard, CT and Planavsky, NJ (2014) The rise of oxygen in Earth's early atmosphere. Nature 506, 307315.CrossRefGoogle Scholar
Lyot, B (1939) The study of the solar corona and prominences without eclipses (George Darwin Lecture). Monthly Notices of the Royal Astronomical Society 99, 580.Google Scholar
Ma, YJ, Russell, CT, Fang, X, Dong, CF, Nagy, AF, Toth, G, Halekas, JS, Connerney, JEP, Espley, JR, Mahaffy, P R, Benna, M, McFadden, J, Mitchell, DL, Andersson, L and Jakosky, BM (2017) Variations of the Martian plasma environment during the ICME passage on 8 March 2015: a time-dependent MHD study. Journal of Geophysical Research 122, 17141730.Google Scholar
Macintosh, B, Graham, JR, Ingraham, P, Konopacky, Q, Marois, C, Perrin, M, Poyneer, L, Bauman, B, Barman, T, Burrows, AS, Cardwell, A, Chilcote, J, De Rosa, RJ, Dillon, D, Doyon, R, Dunn, J, Erikson, D, Fitzgerald, MP, Gavel, D, Goodsell, S, Hartung, M, Hibon, P, Kalas, P, Larkin, J, Maire, J, Marchis, F, Marley, MS, McBride, J, Millar-Blanchaer, M, Morzinski, K, Norton, A, Oppenheimer, BR, Palmer, D, Patience, J, Pueyo, L, Rantakyro, F, Sadakuni, N, Saddlemyer, L, Savransky, D, Serio, A, Soummer, R, Sivaramakrishnan, A, Song, I, Thomas, S, Wallace, JK, Wiktorowicz, S and Wolff, S (2014) First light of the Gemini Planet Imager. PNAS 111, 1266112666.CrossRefGoogle ScholarPubMed
Madhusudhan, N, Lee, KM and Mousis, O (2012) A possible carbon-rich interior in super-earth 55 Cancri e. Astrophysical Journal Letters 759, L40L44.CrossRefGoogle Scholar
Maehara, H, Shibayama, T, Notsu, S, Notsu, Y, Nagao, T, Kusaba, S, Honda, S, Nogami, D and Shibata, K (2012) Superflares on solar-type stars. Nature 485, 478.CrossRefGoogle ScholarPubMed
Maehara, H, Shibayama, T, Notsu, Y, Notsu, S, Honda, S, Nogami, D and Shibata, K (2015) Statistical properties of superflares on solar-type stars based on 1-min cadence data. Earth, Planets, and Space 67, 59.CrossRefGoogle Scholar
Maehara, H, Notsu, Y, Notsu, S, Namekata, K, Honda, S, Ishii, TT, Nogami, D and Shibata, K (2017) Starspot activity and superflares on solar-type stars. Publications of the Astronomical Society of Japan 69, 41.CrossRefGoogle Scholar
Maggio, A, Sciortino, S, Vaiana, GS, Majer, P, Bookbinder, JA, Golub, L, Harnden, FR Jr. and Rosner, R (1987) An X-ray and near-infrared study of young stars in the Carina Nebula. The Astrophysical Journal 315, 687.CrossRefGoogle Scholar
Majeau, C, Agol, E and Cowan, NB (2012) A two-dimensional infrared map of the extrasolar planet HD 189733b. The Astrophysical Journal Letters 747, L20.CrossRefGoogle Scholar
Makarov, VV (2012) Conditions of passage and entrapment of terrestrial planets in spin-orbit resonances. The Astrophysical Journal 752, 73.CrossRefGoogle Scholar
Makarov, VV (2015) Equilibrium rotation of semiliquid exoplanets and satellites. The Astrophysical Journal 810, 12.CrossRefGoogle Scholar
Makarov, VV and Efroimsky, M (2013) No pseudosynchronous rotation for terrestrial planets and moons. The Astrophysical Journal 764, 27.CrossRefGoogle Scholar
Makarov, VV and Efroimsky, M (2014) Tidal dissipation in a homogeneous spherical body. II. Three examples: mercury, Io, and Kepler-10 b. The Astrophysical Journal 795, 7.CrossRefGoogle Scholar
Makarov, VV, Berghea, C and Efroimsky, M (2012) Dynamical evolution and spin–orbit resonances of potentially habitable exoplanets: the case of GJ 581d. The Astrophysical Journal 761, 83.CrossRefGoogle Scholar
Marcy, GW and Butler, RP (1996) A planetary companion to 70 Virginis. The Astrophysical Journal 464, 147.CrossRefGoogle Scholar
Martin, S, Booth, A, Liewer, K, Raouf, N, Loya, F and Tang, H (2012) High performance testbed for four-beam infrared interferometric nulling and exoplanet detection. Applied Optics 51, 39073921. DOI: 10.1364/AO.51.003907.CrossRefGoogle Scholar
Marty, B, Zimmermann, L, Pujol, M, Burgess, R and Philippot, P (2013) Nitrogen isotopic composition and density of the Archean atmosphere. Science 342, 101104.CrossRefGoogle ScholarPubMed
Masson, S, Antiochos, SK and DeVore, CR (2013) A model for the escape of solar- are-accelerated particles. The Astrophysical Journal 771, 8296.CrossRefGoogle Scholar
Matthes, K, Funke, B, Andersson, ME, Barnard, L, Beer, J, Charbonneau, P, Clilverd, MA, Dudok de Wit, T, Haberreiter, M, Hendry, A, Jackman, CH, Kretzschmar, M, Kruschke, T, Kunze, M, Langematz, U, Marsh, DR, Maycock, AC, Misios, S, Rodger, CJ, Scaife, AA, Seppälä, A, Shangguan, M, Sinnhuber, M, Tourpali, K, Usoskin, I, van de Kamp, M, Verronen, PT and Versick, S (2017) Solar forcing for CMIP6 (v3.1). Geoscientific Model Development Discussions 10, 22472302.CrossRefGoogle Scholar
Mayor, M and Queloz, D (1995) A Jupiter-mass companion to a solar-type star. Nature 378, 355.CrossRefGoogle Scholar
McComas, DJ, Velli, M, Lewis, WS, Acton, LW, Balat-Pichelin, M, Bothmer, V, Dirling, RB, Feldman, WC, Gloeckler, G, Habbal, SR, Hassler, DM, Mann, I, Matthaeus, WH, McNutt, RL, Mewaldt, RA, Murphy, N, Ofman, L, Sittler, EC, Smith, CW, Zurbuchen, TH (2007) Understanding coronal heating and solar wind acceleration: case for in situ near-Sun measurements. Reviews of Geophysics 45, 1004.CrossRefGoogle Scholar
McDonough, WF and Sun, S-S (1995) The composition of the Earth. Chemical Geology 120, 223253.CrossRefGoogle Scholar
McEnulty, TR, Luhmann, JG, de Pater, I, Brain, DA, Fedorov, A, Zhang, TL and Dubinin, E (2010) Interplanetary coronal mass ejection influence on high energy pick-up ions at Venus. Planetary and Space Science 58, 17841791.CrossRefGoogle Scholar
McIntosh, SW, Wang, X, Leamon, RJ, Davey, AR, Howe, R, Krista, LD, Malanushenko, AV, Markel, RS, Cirtain, JW, Gurman, JB, Pesnell, WD and Thompson, MJ (2014) Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophysical Journal 792, 12.CrossRefGoogle Scholar
Meadows, VS, Arney, GN, Schwieterman, EW, Lustig-Yaeger, J, Lincowski, AP, Robinson, T, Domagal-Goldman, SD, Deitrick, R, Barnes, RK, Fleming, DP & Luger, R, Driscoll, PE, Quinn, TR and Crisp, D (2018 a) The habitability of Proxima Centauri b: II: environmental states and observational discriminants. Earth and Planetary Astrophysics 18, 133189.Google Scholar
Meadows, VS, Reinhard, CT, Arney, GN, Parenteau, MN, Schwieterman, EW, Domagal-Goldman, SD, Lincowski, AP, Stapelfeldt, KR, Rauer, H, DasSarma, S, Hegde, S, Narita, N, Deitrick, R, Lustig-Yaeger, J, Lyons, TW, Siegler, N and Grenfell, JL et al. (2018b) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630662.CrossRefGoogle Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, Aldahan, A, Beer, J, McConnell, JR, Possnert, G, Sigl, M, Svensson, A, Synal, H-A, Welten, KC and Woodruff, TE (2015) Multiradionuclide evi- dence for the solar origin of the cosmic-ray events of AD774/5 and 993/ 4. Nature Communications 6, id. 8611.CrossRefGoogle Scholar
Miller, SL (1953) A production of amino acids under possible primitive Earth conditions. Science 118, 528529.CrossRefGoogle Scholar
Mironova, IA, Aplin, KL, Arnold, F, Bazilevskaya, GA, Harrison, RG, Krivolutsky, AA, Nicoll, KA, Rozanov, EV, Turunen, E and Usoskin, IG (2015) Energetic particle influence on the Earth's atmosphere. Space Science Reviews 194, 196.CrossRefGoogle Scholar
Mitchell, DL, Lillis, RJ, Lin, RP, Connerney, JEP and Acuña, MH (2007) A global map of Mars' crustal magnetic field based on electron reflectometry. Journal of Geophysical Research 112, E01002.CrossRefGoogle Scholar
Miyakawa, S, James, CH and Miller, SL (2002) The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Origins of Life and Evolution of the Biosphere 32, 195208.CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K and Nakamura, T (2012) A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240.CrossRefGoogle ScholarPubMed
Miyake, F, Masuda, K and Nakamura, T (2013) Another rapid event in the carbon-14 content of tree rings. Nature Communications 4, 1748.CrossRefGoogle ScholarPubMed
Mlynczak, MG (1996) Energetics of the middle atmosphere: theory and observation requirements. Advances in Space Research 17, 117126.CrossRefGoogle Scholar
Mlynczak, MG (1997) Energetics of the mesosphere and lower thermosphere and the SABER experiment. Advances in Space Research 20, 11771183.CrossRefGoogle Scholar
Mlynczak, M, Martin-Torres, FJ, Russell, J, Beaumont, K, Jacobson, S, Kozyra, J, Lopez-Puertas, M, Funke, B, Mertens, C, Gordley, L, Picard, R, Winick, J, Wintersteiner, P and Paxton, L (2003) The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophysical Research Letters 30, 2100.CrossRefGoogle Scholar
Mlynczak, MG, Martin-Torres, FJ, Crowley, G, Kratz, DP, Funke, B, Lu, G, Lopez-Puertas, M, Russell, JM, Kozyra, J, Mertens, C, Sharma, R, Gordley, L, Picard, R, Winick, J and Paxton, L (2005) Energy transport in the thermosphere during the solar storms of April 2002. Journal of Geophysical Research 110, A12S25.CrossRefGoogle Scholar
Mlynczak, MG, Hunt, LA, Thomas Marshall, B, Martin-Torres, FJ, Mertens, CJ, Russell, JM, Remsberg, EE, López-Puertas, M, Picard, R, Winick, J, Wintersteiner, P, Thompson, RE and Gordley, LL (2010) Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. Journal of Geophysical Research 115, A03309.CrossRefGoogle Scholar
Mlynczak, MG, Martin-Torres, FJ, Marshall, BT, Thompson, R.E, Williams, J, Turpin, T, Kratz, DP, Russell, JM, Woods, T and Gordley, LL (2007) Evidence for a solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. Journal of Geophysical Research 112, CiteID A12302.CrossRefGoogle Scholar
Mlynczak, MG, Hunt, LA, Marshall, BT, Russell, JM, Mertens, CJ, Thompson, RE and Gordley, LL (2015) A combined solar and geomagnetic activity index for thermospheric climate. Geophysical Research Letters 42, 36773682.CrossRefGoogle Scholar
Mlynczak, MG, Hunt, LA, Russell, JM III, Marshall, BT, Mertens, CJ and Thompson, RE (2016) The global infrared energy budget of the thermosphere from 1947 to 2016 and implications for solar variability. Geophysical Research Letters 43, 1193411940.CrossRefGoogle ScholarPubMed
Mlynczak, MG, Hunt, LA, Marshall, BT and Russell, JM (2018) Infrared radiation in the thermosphere near the end of solar cycle 24. Geophysical Research Letters 45, 11,58111,587.CrossRefGoogle ScholarPubMed
Molina-Cuberos, GJ, López-Moreno, JJ, Rodrigo, R, Lichtenegger, H and Schwingenschuh, K (2001) A model of Martian ionosphere below 70 km. Advances in Space Research 27, 18011806.CrossRefGoogle Scholar
Moore, TE and Horwitz, JL (2007) Stellar ablation of planetary atmospheres. Reviews of Geophysics 45, CiteID RG3002.CrossRefGoogle Scholar
Moore, TE, Fok, M-C, Delcourt, DC, Slinker, SP and Fedder, JA (2010) Global response to local ionospheric mass ejection. Journal of Geophysical Research: Space Physics 115, CiteID A00J14.CrossRefGoogle Scholar
Moresi, L and Solomatov, V (1998) Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophysical Journal International 133, 669682.CrossRefGoogle Scholar
Moschou, S-P, Drake, JJ, Cohen, O, Alvarado-Gomez, JD and Garraffo, C (2018) A monster CME obscuring a demon star flare. Astrophysical Journal 850, 191200.CrossRefGoogle Scholar
Mróz, P, Udalski, A, Skowron, J, Poleski, R, Kozłowski, S, Szymański, MK, Soszyński, I, Wyrzykowski, Ł, Pietrukowicz, P, Ulaczyk, K, Skowron, D and Pawlak, M (2017) No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183.CrossRefGoogle ScholarPubMed
Mulders, GD, Ciesla, FJ, Min, M and Pascucci, I (2015) The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. The Astrophysical Journal 807, 9.CrossRefGoogle Scholar
Mura, A, Adriani, A, Connerney, JEP, Bolton, S, Altieri, F, Bagenal, F, Bonfond, B, Dinelli, BM, Gérard, J-C, Greathouse, T, Grodent, D, Levin, S, Mauk, B, Moriconi, ML, Saur, J, Waite, JH, Amoroso, M, Cicchetti, A, Fabiano, F, Filacchione, G, Grassi, D, Migliorini, A, Noschese, R, Olivieri, A, Piccioni, G, Plainaki, C, Sindoni, G, Sordini, R, Tosi, F and Turrini, D (2018) Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science 361, 774777.CrossRefGoogle Scholar
Murray-Clay, RA, Chiang, EI and Murray, N (2009) Atmospheric escape from hot Jupiters. The Astrophysical Journal 693, 2342.CrossRefGoogle Scholar
Murray, CD and Dermott, SF (1999) Solar System Dynamics. Cambridge University Press.Google Scholar
Nakagawa, T and Tackley, PJ (2013) Implications of high core thermal conductivity on Earth's coupled mantle and core evolution. Geophysical Research Letters 40, 26522656.CrossRefGoogle Scholar
Namekata, K, Maehara, H, Notsu, Y, Toriumi, S, Hayakawa, H, Ikuta, K, Notsu, S, Honda, S, Nogami, D and Shibata, K (2018) Lifetimes and emergence/decay rates of star spots on solar-type stars estimated by Kepler data in comparison with those of sunspots. The Astrophysical Journal 851, 91105.CrossRefGoogle Scholar
Nikolaou, A, Katyal, N, Tosi, N, Godolt, M, Grenfell, J and Rauer, H (2019) What factors affect the duration and outgassing of the terrestrial magma ocean? The Astrophysical Journal 875, 24.CrossRefGoogle Scholar
Nilsson, H, Edberg, NJT, Stenberg, G, Barabash, S, Holmström, M, Futaana, Y, Lundin, R and Fedorov, A (2011) Heavy Ion Escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus 215, 475484.CrossRefGoogle Scholar
Noack, L and Breuer, D (2014) Plate tectonics on rocky exoplanets. Planetary and Space Science 98, 4149.CrossRefGoogle Scholar
Noack, L, Godolt, M, von Paris, P, Plesa, A-C, Stracke, B, Breuer, D and Rauer, H (2014) Can the interior structure influence the habitability of a rocky planet? Planetary and Space Science 98, 1429.CrossRefGoogle Scholar
Noack, L, Höning, D, Rivoldini, A, Heistracher, C, Zimov, N, Journaux, B, Lammer, H, Van Hoolst, T and Bredehöft, JH (2016) Water-rich planets: How hab- itable is a water layer deeper than on Earth? Icarus 277, 215236.CrossRefGoogle Scholar
Noack, L, Snellen, I and Rauer, H (2017) Water in extrasolar planets and implications for habitability. Space Science Reviews 212, 877898.CrossRefGoogle Scholar
Nordheim, TA, Dartnell, LR, Desorgher, L, Coates, AJ and Jones, GH (2015) Ionization of the Venusian atmosphere from solar and galactic cosmic rays. Icarus 245, 8086.CrossRefGoogle Scholar
Norman, RB, Gronoff, G and Mertens, CJ (2014) Influence of dust loading on atmospheric ionizing radiation on Mars. Journal of Geophysical Research 119, 452461.Google Scholar
Notsu, Y, Shibayama, T, Maehara, H, Notsu, S, Nagao, T, Honda, S, Ishii, TT, Nogami, D and Shibata, K (2013) Superflares on Solar-type Stars Observed with Kepler II. Photometric Variability of Superflare-generating Stars: A Signature of Stellar Rotation and Starspots. The Astrophysical Journal 771, 12.CrossRefGoogle Scholar
Odert, P, Erkaev, NV, Kislyakova, KG, Lammer, H, Mezentsev, AV, Ivanov, VA, Fossati, L, Leitzinger, M, Kubyshkina, D and Holmstroem, M (2019) Modeling the Ly-α transit absorption of the hot Jupiter HD 189733b. eprint arXiv:1903.10772.Google Scholar
Ó Fionnagáin, D, Vidotto, AA, Petit, P, Folsom, CP, Jeffers, SV, Marsden, SC, Morin, J and do Nascimento, J-D (2018) The solar wind in time II: 3D stellar wind structure and radio emission. Monthly Notices of the Royal Astronomical Society 483, 873886.Google Scholar
Ofman, L (2010) Wave modeling of the solar wind. Living Reviews in Solar Physics 7, 149.CrossRefGoogle ScholarPubMed
O'Hare, P, Mekhaldi, F, Adolphi, F, Raisbeck, G, Aldahan, A, Anderberg, E, Beer, J, Christl, M, Fahrni, S, Synal, H-A, Park, J, Possnert, G, Southon, J, Bard, E, Aster, T, Muscheler, R (2019) Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (~660 BC). PNAS 116, 59615966.CrossRefGoogle Scholar
Omidi, N, Collinson, G and Sibeck, D (2017) Structure and properties of the foreshock at Venus. Journal of Geophysical Research: Space Physics 122, 1027510286.Google Scholar
O'Neill, C and Lenardic, A (2007) Geological consequences of super-sized Earths. Geophysical Research Letters 34, 14.CrossRefGoogle Scholar
O'Neill, C, Jellinek, AM and Lenardic, A (2007) Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth and Planetary Science Letters 261, 2032.CrossRefGoogle Scholar
Öpik, EJ (1963) Selective escape of gases. Geophysical Journal International 7, 490526.CrossRefGoogle Scholar
Oppenheimer, R and Hinkley, S (2009) High-Contrast observations in optical and infrared astronomy. Annual Review of Astronomy and Astrophysics 47, 253.CrossRefGoogle Scholar
Oran, R, Landi, E, van der Holst, B, Sokolov, IV and Gombosi, TI (2017) Alfvén wave turbulence as a coronal heating mechanism: simultaneously predicting the heating rate and the wave-induced emission line broadening. The Astrophysical Journal 845, 98.CrossRefGoogle Scholar
Osorio, MZ, Béjar, VJS, Martın, EL, Rebolo, R, , y NavascuésDB, Bailer-Jones, CAL and Mundt, R (2000) Discovery of young, isolated planetary mass objects in the Sigma Orionis star cluster. Science 290, 103107.CrossRefGoogle Scholar
Osten, RA (2016) Solar explosive activity throughout the evolution of the solar system. In Schrijver, CJ, Bagenal, F, Sojka, JJ (eds), Heliophysics: Active Stars, their Astrospheres, and Impacts on Planetary Environments. Cambridge: Cambridge University Press, pp. 2355.CrossRefGoogle Scholar
Osten, RA and Wolk, S (2017) A framework for finding and interpreting stellar CME. In Nandi, D, Valio, A and Petit, P (eds), Living Around Active Stars. Proceedings of IAU Symposium No. 328. Cambridge: University Printing House, pp. 243251.Google Scholar
Osten, RA, Crosley, MK, Güdel, M, Kowalski, AF, Lazio, J, Linsky, J, Murphy, E and White, S (2018) The ngVLA's Role in Exoplanet Science: Constraining Exo-Space Weather. White paper submitted to National Academy of Science Committee on Exoplanet Science Strategy. arXiv admin note: text overlap with arXiv:1711.05113.Google Scholar
Owen, JE and Mohanty, S (2016) Habitability of terrestrial-mass planets in the HZ of M Dwarfs - I. H/He-dominated atmospheres. Monthly Notices of the Royal Astronomical Society 459, 40884108.CrossRefGoogle Scholar
Owen, JE and Wu, Y (2013) Kepler planets: a tale of evaporation. The Astrophysical Journal 775, 105126.CrossRefGoogle Scholar
Pallavicini, R, Golub, L, Rosner, R, Vaiana, GS, Ayres, T and Linsky, JL (1981) Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. The Astrophysical Journal 248, 279.CrossRefGoogle Scholar
Papuc, A and Davies, GF (2008) The internal activity and thermal evolution of Earth-like planets. Icarus 195, 447458.CrossRefGoogle Scholar
Parker, EN (1958) Dynamics of the interplanetary Gas and magnetic fields. The Astrophysical Journal 128, 664676.CrossRefGoogle Scholar
Patel, BH, Percivalle, C, Ritson, DJ, Duffy, CD and Sutherland, JD (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nature Chemistry 7, 301307.CrossRefGoogle Scholar
Pavlov, AA, Hurtgen, MT, Kasting, JF and Arthur, MA (2003) Methane-rich Proterozoic atmosphere? Geology 31, 8790.2.0.CO;2>CrossRefGoogle Scholar
Peacock, S, Barman, T, Shkolnik, EL, Hauschildt, PH and Baron, E (2019) Predicting the extreme ultraviolet radiation environment of exoplanets around Low-mass stars: the TRAPPIST-1 system. The Astrophysical Journal 871, 235245.CrossRefGoogle Scholar
Pertrovay, K (2010) Solar cycle prediction. Living Reviews in Solar Physics 7, 6.Google Scholar
Peters, R, Lay, O and Jeganathan, M (2008) Broadband phase and intensity compensation with a deformable mirror for an interferometric nuller. Applied Optics 47, 39203926.CrossRefGoogle ScholarPubMed
Petit, P, Dintrans, B, Solanki, SK, Donati, J-F, Aurière, M, Lignières, F, Morin, J, Paletou, F, Ramirez Velez, J, Catala, C and Fares, R (2008) Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold. Monthly Notices of the Royal Astronomical Society 388, 8088.CrossRefGoogle Scholar
Phillips, JL and McComas, DJ (1991) The magnetosheath and magnetotail of Venus. Space Science Reviews 55, 180.CrossRefGoogle Scholar
Phillips, JL, Stewart, AIF and Luhmann, JG (1986) The Venus ultraviolet aurora: Observations at 130.4 nm. Geophysical Research Letters 13, 10471050.CrossRefGoogle Scholar
Pierazzo, E and Chyba, CF (1999) Amino acid survival in large cometary impacts. Meteoritics & Planetary Science 34, 909918.CrossRefGoogle Scholar
Pierrehumbert, RT (2011) Principles of Planetary Climate. Cambridge University Press.Google Scholar
Pierrehumbert, R and Gaidos, E (2011a) Solar cycle prediction. The Astrophysical Journal Letters 734, L13.CrossRefGoogle Scholar
Pierrehumbert, R and Gaidos, E (2011b) The high albedo of the Hot Jupiter Kepler-7 b. ApJ Letters 734, 1.Google Scholar
Pizzolato, N, Maggio, A, Micela, G, Sciortino, S and Ventura, P (2003) The stellar activity-rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. Astronomy & Astrophysics 397, 147.CrossRefGoogle Scholar
Plavchan, P, Latham, D, Gaudi, S, Crepp, J, Dumusque, X, Furesz, G, Vanderburg, A, Blake, C, Fischer, D, Prato, L, White, R, Makarov, V, Marcy, G, Stapelfeldt, K, Haywood, R, Collier-Cameron, A, Quirrenbach, A, Mahadevan, S, Anglada, G and Muirhead, P (2015) Radial velocity prospects current and future: a white paper report prepared by the study analysis group 8 for the exoplanet program analysis group (ExoPAG). eprint arXiv:1503.01770.Google Scholar
Previdi, M and Polvani, LM (2014) Climate system response to stratospheric ozone depletion and recovery. Quarterly Journal of the Royal Meteorological Society. Royal Meteorological Society 140, 24012419.CrossRefGoogle Scholar
Quirrenbach, A, Amado, PJ, Caballero, JA, Mandel, H, Mundt, R, Reiners, A, Ribas, I, Sánchez Carrasco, MA, Seifert, W, Azzaro, M, Galadí, D and CARMENES Consortium (2014) The CARMENES survey: a search for terrestrial planets in the habitable zones of M dwarfs. Formation, Detection, and Characterization of Extrasolar Habitable Planets, Proceedings of the International Astronomical Union, IAU Symposium, Vol. 293, pp. 177–182.Google Scholar
Rahmati, A, Larson, DE, Cravens, T, Lillis, RJ, Dunn, P, Halekas, JS, McFadden, JP, Mitchell, DL, Thiemann, E, Connerney, JEP, DiBraccio, GA, Espley, JR and Eparvier, FG (2017) MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research 112, 36893706.Google Scholar
Ramirez, RM, Kopparapu, R, Zugger, ME, Robinson, TD, Freedman, R and Kasting, JF (2014) Warming early Mars with CO2 and H2. Nature Geoscience 7, 5963.CrossRefGoogle Scholar
Ramirez, RM (2017) Habitable zones: extensions in space and time. Icarus 297, 7182.CrossRefGoogle Scholar
Ramirez, RM and Craddock, RA (2018) The geological and climatological case for a warmer and wetter early Mars. Nature Geoscience 11, 230237.CrossRefGoogle Scholar
Ramirez, RM and Kaltenegger, L (2014) The habitable zones of pre-main-sequence stars. ApJ Letters 797, L25.CrossRefGoogle Scholar
Ramirez, RM and