Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gbqfq Total loading time: 0.549 Render date: 2022-05-28T01:55:38.750Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Optimal measures for characterizing water-rich super-Earths

Published online by Cambridge University Press:  29 October 2014

Nikku Madhusudhan*
Affiliation:
Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
Seth Redfield
Affiliation:
Astronomy Department, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459, USA

Abstract

The detection and atmospheric characterization of super-Earths is one of the major frontiers of exoplanetary science. Currently, extensive efforts are underway to detect molecules, particularly H2O, in super-Earth atmospheres. In the present work, we develop a systematic set of strategies to identify and observe potentially H2O-rich super-Earths that provide the best prospects for characterizing their atmospheres using existing instruments. First, we provide analytic prescriptions and discuss factors that need to be taken into account while planning and interpreting observations of super-Earth radii and spectra. We discuss how observations in different spectral bandpasses constrain different atmospheric properties of a super-Earth, including radius and temperature of the planetary surface as well as the mean molecular mass, the chemical composition and thermal profile of the atmosphere. In particular, we caution that radii measured in certain bandpasses can induce biases in the interpretation of the interior compositions. Second, we investigate the detectability of H2O-rich super-Earth atmospheres using the Hubble Space Telescope Wide Field Camera 3 spectrograph as a function of the planetary properties and stellar brightness. We find that highly irradiated super-Earths orbiting bright stars, such as 55 Cancri e, present better candidates for atmospheric characterization compared to cooler planets such as GJ 1214b even if the latter orbit lower-mass stars. Besides being better candidates for both transmission and emission spectroscopy, hotter planets offer higher likelihood of cloud-free atmospheres which aid tremendously in the observation and interpretation of spectra. Finally, we present case studies of two super-Earths, GJ 1214b and 55 Cancri e, using available data and models of their interiors and atmospheres.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, Y., Abe-Ouchi, A., Sleep, N. H. & Zahnle, K. J. (2011). Astrobiology 11, 443.CrossRefGoogle Scholar
Atreya, S. K. (2010). Atmospheric Moons Galileo would have loved. Galileo's Medicean Moons  –  their impact on 400 Years of Discovery. (Barbieri, C. et al. eds.), Proc. IAU Symp. No. 269, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Barclay, T. et al. (2013). Astrophys. J. 768, 101.CrossRefGoogle Scholar
Batalha, N. et al. (2011). Astrophys. J. 729, 27.CrossRefGoogle Scholar
Bean, J.L., Miller-Ricci Kempton, E. & Homeier, D. (2010). Nature 468, 669.CrossRefGoogle Scholar
Bean, J. et al. (2011). Astrophys. J. 743, 92.CrossRefGoogle Scholar
Belu, A. R. et al. (2011). Astron. Astrophys.. 525, A83.CrossRefGoogle Scholar
Belu, A. R. et al. (2013). Astrophys. J. 768, 125.CrossRefGoogle Scholar
Bennekke, B. & Seager, S. (2012). Astrophys. J. 753, 100.CrossRefGoogle Scholar
Bennekke, B. & Seager, S. (2013). arXiv:1306.6325B.Google Scholar
Berta, Z. et al. (2012). Astrophys. J. 747, 35.CrossRefGoogle Scholar
Borucki, W. J. et al. (2013). Science 340, 587.CrossRefGoogle Scholar
Broeg, C. et al. (2013). Hot planets and cool stars, Garching, Germany ed. Roberto, Saglia, EPJ Web Conf., 47, 03005 (arXiv:1305.2270)Google Scholar
Castan, T. & Menou, K. (2011). Astrophys. J. 743, L36.CrossRefGoogle Scholar
Charbonneau, D. et al. (2009). Nature 462, 891.CrossRefGoogle Scholar
Croll, B. et al. (2011). Astrophys. J. 736, 78.CrossRefGoogle Scholar
de Mooij, E. J. W. et al. (2012). Astron. Astrophys.. 538, 46.CrossRefGoogle Scholar
Deming, D. et al. (2013). Astrophys. J. 774, 95.CrossRefGoogle Scholar
Demory, B-O. et al. (2011) Astron. Astrophys.. 533, A114.CrossRefGoogle Scholar
Demory, B-O. et al. (2012). Astrophys. J. 751, L28.CrossRefGoogle Scholar
Désert, J.-M. et al. (2011). Astrophys. J. 731, L40.CrossRefGoogle Scholar
Dragomir, D. et al. (2013). Astrophys. J. 772, L2.CrossRefGoogle Scholar
Ehrenreich, et al. (2012). Astron. Astrophys.. 547, A18.CrossRefGoogle Scholar
Endl, M. et al. (2012). Astrophys. J. 759, 19.CrossRefGoogle Scholar
Fortney, J. J., Marley, M. S., Barnes, J. W. (2007) Astrophys. J. 659, 1661.CrossRefGoogle Scholar
Fressin, F. et al. (2013). Astrophys. J. 766, 81.CrossRefGoogle Scholar
Gillon, M. et al. (2012). Astron. Astrophys.. 539, A28.CrossRefGoogle Scholar
Gillon, M. et al. (2014). A&A, 563A, 21Google Scholar
Gillon, M., Jehin, E., Fumel, A., Magain, P., Queloz, D. (2013). Hot planets and cool stars, Garching, Germany, ed. Saglia, R., EPJ Web Conf., 47, id.03001Google Scholar
Gong, Y-X. & Zhou, J-L. (2012). Res. Astron. Astrophys.. 12(6), 678.CrossRefGoogle Scholar
Hedelt, P. et al. (2013). Astron. Astrophys.. 553, A9.CrossRefGoogle Scholar
Heng, K. & Kopparla, P. (2012). Astrophys. J. 754, 60.CrossRefGoogle Scholar
Howard, A. et al. (2012) Astrophys. J Suppl. 201, 15.CrossRefGoogle Scholar
Howe, A. & Burrows, A. (2012) Astrophys. J. 756, 176.CrossRefGoogle Scholar
Kaltenegger, L. & Traub, W. (2009). 698, 519.Google Scholar
Kaltenegger, L., Sasselov, D. & Rugheimer, S. (2013). Astrophys. J. 775, L47CrossRefGoogle Scholar
Kasting, J. F. (1993). 101, 108.Google Scholar
Kempton, E., Zahnle, K. & Fortney, J. J. (2012). Astrophys. J. 745, 3.CrossRefGoogle Scholar
Kipping, D. M., Spiegel, D. S. & Sasselov, D. D. (2013). Mon. Not. R. Astron. Soc., 434, 1883.CrossRefGoogle Scholar
Kopparapu, R. K. et al. (2013a) Astrophys. J. 765, 131.CrossRefGoogle Scholar
Kopparapu, R. K. et al. (2013b). Astrophys. J. 770, 82.CrossRefGoogle Scholar
Kreidberg, L. et al. (2014). Nature 505, 69.CrossRefGoogle Scholar
Lee, J.-M., Fletcher, L. N. & Irwin, P. G. J. (2012). Mon. Not. R. Astron. Soc. 420, 170.CrossRefGoogle Scholar
Leger, A. et al. (2009). Astron. Astrophys.. 506, 287.CrossRefGoogle Scholar
Line, M. et al. (2012). Astrophys. J. 749, 93.CrossRefGoogle Scholar
Lodders, K. (2002). Astrophys. J. 577, 974.CrossRefGoogle Scholar
Madhusudhan, N. (2012). Astrophys. J. 758, 36.CrossRefGoogle Scholar
Madhusudhan, N. & Seager, S. (2009). Astrophys. J. 707, 24.CrossRefGoogle Scholar
Madhusudhan, N. & Seager, S. (2011). Astrophys. J. 729, 41.CrossRefGoogle Scholar
Madhusudhan, N. et al. (2011). Nature 469, 64.CrossRefGoogle Scholar
Madhusudhan, N. et al. (2012). Astrophys. J. 759, L40.CrossRefGoogle Scholar
Marley, M. S., Ackerman, A. S., Cuzzi, J. N. & Kitzmann, D. (2013). In comparative climatology of terrestrial planets (eds. Mackwell, Stephen J., Simon-Miller, Amy A., Harder, Jerald W., and Bullock, Mark A.), University of Arizona Press, Tucson, 610 pp., p. 367–391.Google Scholar
Moriarty, J., Madhusudhan, N. & Fischer, D. (2014). Astrophys. J. 787, 81.CrossRefGoogle Scholar
Morley, C. V. et al. (2013). Astrophys. J. 775, 33.CrossRefGoogle Scholar
Miller-Ricci, E. & Fortney, J. J. (2010). Astrophys. J. 716, L74.CrossRefGoogle Scholar
Miller-Ricci, E., Seager, S. & Sasselov, D. (2009). Astrophys. J. 690, 1056.CrossRefGoogle Scholar
Pickles, A. J. (1998). Publ. Astron. Soc. Pacific 110, 863.CrossRefGoogle Scholar
Pont, F., Knutson, H., Gilliland, R. L., Moutou, C. & Charbonneau, D. (2008). Monthly Notices of the Royal Astronomical Society, 385, 109.CrossRefGoogle Scholar
Quintana, E. et al. (2014). Science 344, 277.CrossRefGoogle Scholar
Rauer, H. et al. (2013). Experimental Astronomy, submitted (arXiv:1310.0696)Google Scholar
Ricker, G. et al. (2014). Proc. SPIE, Astronomical Telescopes + Instrumentation, submitted (arXiv:1406.0151).Google Scholar
Rogers, L. A. & Seager, S. (2010a). Astrophys. J. 712, 974.CrossRefGoogle Scholar
Rogers, L. A. & Seager, S. (2010b). Astrophys. J. 716, 1208.CrossRefGoogle Scholar
Seager, S., et al. (2007). Astrophys. J. 669, 1279.CrossRefGoogle Scholar
Selsis, F. (2007). Lectures in Astrobiology, Advances in Astrobiology and Biogeophysics.. p. 199. Springer-Verlag, Berlin, Heidelberg, 2007.Google Scholar
Snellen, I., Stuik, R., Navarro, R., et al. (2012). Proc. SPIE 8444, 84440I.CrossRefGoogle Scholar
Snellen, I. A. G. et al. (2013). Astrophys. J. 764, 182.CrossRefGoogle Scholar
Sotin, C., Grasset, O. & Mocquet, A. (2007). Icarus 191, 337.CrossRefGoogle Scholar
Spiegel, D. S., Silverio, K. & Burrows, A. (2009). Astrophys. J. 699, 1487.CrossRefGoogle Scholar
Sudarsky, D., Burrows, A. & Hubeny, I. (2003). Astrophys. J. 588, 1121.CrossRefGoogle Scholar
Valencia, D., O'Connell, R. J. & Sasselov, D. D. (2006). Icarus 181, 545.CrossRefGoogle Scholar
Valencia, D., Ikoma, M., Guillot, T. & Nettelmann, N. (2010). Astron. Astrophys.. 516A, 20.CrossRefGoogle Scholar
Valencia, D., Guillot, T., Parmentier, V. & Freedman, R. S. (2013). Astrophys. J. 775, 10.CrossRefGoogle Scholar
von Braun, K. et al. (2011). Astrophys. J. 740, 49.CrossRefGoogle Scholar
Wagner, F. W., Tosi, N., Sohl, F., Rauer, H. & Spohn, T. (2012). Astron. Astrophys.. 541, 103.CrossRefGoogle Scholar
Winn, J. N. et al. (2011). Astrophys. J. 737, L18.CrossRefGoogle Scholar
Wright, J. T. et al. (2011). Publ. Astron. Soc. Pacific 123, 412.CrossRefGoogle Scholar
15
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optimal measures for characterizing water-rich super-Earths
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Optimal measures for characterizing water-rich super-Earths
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Optimal measures for characterizing water-rich super-Earths
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *