Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T18:48:40.691Z Has data issue: false hasContentIssue false

Rocky exoplanet characterization and atmospheres

Published online by Cambridge University Press:  16 February 2012

L. Kaltenegger*
MPIA, Koenigstuhl 17, 69117 Heidelberg, Germany CfA, 60 Garden street, Cambridge 02138 MA, USA
Y. Miguel
MPIA, Koenigstuhl 17, 69117 Heidelberg, Germany
S. Rugheimer
CfA, 60 Garden street, Cambridge 02138 MA, USA


A decade of exoplanet search has led to surprising discoveries, from giant planets close to their star, to planets orbiting two stars, all the way to the first extremely hot, rocky worlds with potentially permanent lava on their surfaces due to the star's proximity. Observation techniques have reached the sensitivity to explore the chemical composition of the atmospheres as well as physical structure of some detected gas planets and detect planets of less than 10 Earth masses (MEarth), the so-called super-Earths, among them some that may potentially be habitable. Three confirmed non-transiting planets, and several transiting Kepler planetary candidates, orbit in the habitable zone (HZ) of their host star. The detection and characterization of rocky and potentially Earth-like planets is approaching rapidly with future ground and space missions that can explore the planetary environments by analysing their atmosphere remotely. This paper discusses how to characterize a rocky exoplanet remotely.

Research Article
Published by Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abe, Y., Abe-Ouchi, A., Sleep, N.H. & Zahnle, K.J. (2011). Habitable zone limits for dry planets. Astrobiology 11(5), 443460.Google Scholar
Arnold, L., Gillet, S., Lardiere, O., Riaud, P. & Schneider, J. (2002). A test for the search for life on extrasolar planets. Looking for the terrestrial vegetation signature in the Earthshine spectrum. Astron. Astrophys. 392, 231237.CrossRefGoogle Scholar
Batalha, N.M. et al. (2011). Kepler's first rocky planet: Kepler-10b. Astrophys. J. 729, 27.CrossRefGoogle Scholar
Bean, J.L., Miller-Ricci Kempton, E. & Homeier, D. (2011). Nature 468(7324), 669.Google Scholar
Bonfils, X. et al. (2005). Astron. Astrophys. 443, L15.CrossRefGoogle Scholar
Borucki, W.J. et al. (2011). Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. Astrophys. J. 736, 19.Google Scholar
Brack, A. (1993). Liquid water and the origin of life. In Origins of Life and Evolution of the Biosphere, 23, 1. Springer, pp. 310.Google Scholar
Charbonneau, D. et al. (2009). A super-Earth transiting a nearby low-mass star. Nature 462, 891.Google Scholar
Christensen, P.R. & Pearl, J.C. (1997). Initial data from the Mars Global Surveyor thermal emission spectrometer experiment: observations of the Earth. J. Geophys. Res. 102, 1087510880.CrossRefGoogle Scholar
Cowan, N.B. et al. (2009). Alien maps of an ocean-bearing world. Astrophys. J. 700, 915.CrossRefGoogle Scholar
Des Marais, D.J., Harwit, M.O., Jucks, K.W., Kasting, J.F., Lin, D.N.C., Lunine, J.I., Schneider, J., Seager, S., Traub, W.A. & Woolf, N.J. (2002). Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153181.CrossRefGoogle ScholarPubMed
Désert, J.-M. et al. (2011). Observational evidence for a metal-rich atmosphere on the Super-Earth GJ1214b. Astrophys. J., 731, 40.Google Scholar
Domagal-Goldman, S.D., Meadows, V.S., Claire, M.W. & Kasting, J.F. (2011). Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11(5), 419441.Google Scholar
Fegley, B. & Cameron, A.G.W. (1987). A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth Planet. Sci. Lett. 82, 207.CrossRefGoogle Scholar
Gaidos, E. & Williams, D.M. (2004). Seasonality on terrestrial extrasolar planets: inferring obliquity and surface conditions from infrared light curves. New Astron. 10, 6772.CrossRefGoogle Scholar
Grasset, O., Schneider, J. & Sotin, C. (2009). Astrophys. J. 693, 722.Google Scholar
Grenfell, J.L., Stracke, B., von Paris, P., Patzer, B., Titz, R., Segura, A. & Rauer, H. (2007). The response of atmospheric chemistry on Earth-like planets around F, G and K Stars to small variations in orbital distance. Planet. Space Sci. 55, 661671.CrossRefGoogle Scholar
Howard, Andrew W., Marcy, Geoffrey W., Bryson, Stephen T., Jenkins, Jon M., Rowe, Jason F., Batalha, Natalie M., Borucki, William J., et al. (2011). arXiv:1103.2541.Google Scholar
Kalas, P., Graham, J.R., Chiang, E., Fitzgerald, M.P., Clampin, M., Kite, E.S., Stapelfeldt, K., Marois, C. & Krist, J. (2008). Optical images of an exosolar planet 25 light-years from Earth. Science 322, 13451347.Google Scholar
Kaltenegger, L. & Sasselov, D. (2011). Exploring the habitable zone for Kepler planetary candidates. Astrophys. J. 736, L25.Google Scholar
Kaltenegger, L. & Traub, W. (2009). Transits of Earth-like planets. Astrophys. J. 698, 519.Google Scholar
Kaltenegger, L., Segura, A. & Mohanty, S. (2011). Model spectra of the first potentially habitable super-Earth–Gl581d. Astrophys. J. 733, 35.CrossRefGoogle Scholar
Kaltenegger, L., Traub, W.A. & Jucks, K.W. (2007). Spectral evolution of an Earth-like planet. Astrophys. J. 658, 598616.Google Scholar
Kasting, J.F., Toon, O.B. & Pollack, J.B. (1988). How climate evolved on the terrestrial planets. Sci. Am. 258, 90.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, H. (1993). Habitable zones around main sequence stars. Icarus 101, 108119.CrossRefGoogle ScholarPubMed
Kiang, N.Y., Siefert, J.G. & Blankenship, R.E. (2007). Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7(1), 222251.Google Scholar
Lagrange, A.-M. et al. (2009). A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L-band imaging. Astron. Astrophys. 493, L21L25.CrossRefGoogle Scholar
Léger, A. et al. (2009). Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius. Astron. Astrophys. 506, 287.CrossRefGoogle Scholar
Lissauer, J.J. et al. (2011). Architecture and dynamics of Kepler's candidate multiple transiting planet systems. Astrophys. J. 197, 8.Google Scholar
Livengood, T.A. et al. (2011). Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission. Astrobiology 11, 907.CrossRefGoogle ScholarPubMed
Lovelock, J.E. (1975). Thermodynamics and the recognition of alien biospheres. Proc. R. Soc. Lond., Series B, Biol. Sci. 189(1095), 167180.Google Scholar
Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., Doyon, R. et al. (2008). Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 13481350Google Scholar
Meadows, V. & Seager, S. (2010). Terrestrial planet atmospheres and biosignatures. In Exoplanets, ed. Seager, S. & Tucson, A.Z.,Tucson, AZ, USA, pp. 441470. University of Arizona Press, 2010, 526 pp. ISBN 978-0-8165-2945-2.Google Scholar
Miguel, Y., Kaltenegger, L., Fegley, B. & Schaefer, L. (2011). Compositions of hot super-Earth atmospheres: exploring Kepler candidates. Astrophys. J. Lett. 742, L19.Google Scholar
Miller-Ricci Kempton, E., Zahnle, K. & Fortney, J.J. (2012). The atmospheric chemistry of GJ 1214b: photochemistry and clouds. Astrophys. J. 745, 3.Google Scholar
Montanes-Rodriguez, P., Pallé, E. & Goode, P.R. (2007). Measurements of the surface brightness of the Earthshine with applications to calibrate lunar flashes. Astrophys. J. 134, 11451149.Google Scholar
Montañés-Rodriguez, P., Pallé, E., Goode, P.R., Hickey, J. & Koonin, S.E. (2005). Globally integrated measurements of the Earth's visible spectral albedo. Astrophys. J. 629, 11751182.Google Scholar
Moskovitz, N.A., Gaidos, E. & Williams, D.M. (2009). The effect of Lunarlike satellites on the orbital infrared light curves of Earth-analog planets. Astrobiology 9(3), 269277.CrossRefGoogle ScholarPubMed
Pallé, E., Ford Eric, B., Seager, S., Montañés-Rodríguez, P. & Vazquez, M. (2008). Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations. Astrophys. J. 676, 13191329.Google Scholar
Pallé, E., Zapatero Osorio, M.R., Barrena, R., Montañés-Rodríguez, P. & Martín, E.L. (2009). Earth's transmission spectrum from lunar eclipse observations. Nature 459, 814816.CrossRefGoogle ScholarPubMed
Pavlov, A.A., Hurtgen, M.T., Kasting, J.F. & Arthur, M.A. (2003). Methane-rich proterozoic atmosphere? Geology 31, 8792.Google Scholar
Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A., Freedman, R. & Greenhouse, R. (2000). Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 981992.Google ScholarPubMed
Pierrehumbert, R. & Gaidos, E. (2011). Hydrogen greenhouse planets beyond the habitable Zone. Astrophys. J. 734, 13L.Google Scholar
Sagan, C., Thompson, W.R., Carlson, R., Gurnett, D. & Hord, C. (1993). A search for life on Earth from the Galileo spacecraft. Nature 365, 715.Google Scholar
Scalo, J. et al. (2007). Astrobiology 7, 85.Google Scholar
Schaefer, L. & Fegley, B. (2004). A thermodynamic model of high temperature lava vaporization on Io. Icarus 169, 216.Google Scholar
Schaefer, L. & Fegley, B. (2009). Chemistry of silicate atmospheres of evaporating Super-Earths. Astrophys. J. Lett. 703, L113.Google Scholar
Schindler, T.L. & Kasting, J.F. (2000). Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. Icarus 145, 262271.Google Scholar
Schopf, J.W. (1993). Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260, 640642.CrossRefGoogle ScholarPubMed
Seager, S. & Ford, E.B. (2002). The vegetation red edge spectroscopic feature as a surface biomarker. In Astrophysics of Life Conference Proceedings, STScI, May 2002, 9 pages. arXiv:astro-ph/0212550.Google Scholar
Seager, S., Kuchner, M., Hier-Majumder, C.A. & Militzer, B. (2007). Mass-radius relationships for solid exoplanets. Astrophys. J. 669, 12791297.Google Scholar
Seager, S., Turner, E.L., Schafer, J. & Ford, E.B. (2005). Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5, 372390.Google Scholar
Segura, A., Kasting, J.F., Meadows, V., Cohen, M., Scalo, J., Crisp, D., Butler, R.A.H. & Tinetti, G. (2005). Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5, 706725.Google Scholar
Segura, A., Krelove, K., Kasting, J.F., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M. & Mlawer, E. (2003). Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3, 689708.Google Scholar
Selsis, F. (2000). Review: Physics of Planets I: Darwin and the atmospheres of terrestrial planets. In Darwin and Astronomy – The Infrared Space Interferometer’, Stockholm, Sweden, 17–19 November 1999, ESA SP 451, Noordwijk, The Netherlands, pp. 133142.Google Scholar
Selsis, F., Kasting, J.F., Levrard, B.,Paillet, J.,Ribas, I.,Delfosse, X. (2007). A&A, 476(3), 1373Google Scholar
Sotin, C., Grasset, O. & Mocquet, A. (2007). Icarus, 191, 337.Google Scholar
Tinetti, G., Rashby, N. & Yung, Y. (2006). Detectability of red-edge-shifted vegetation on terrestrial planets orbiting M stars. Astrophys. J. Lett. 644, L129L132.Google Scholar
Traub, W.A. (2003). The Colors of Extrasolar Planets, Scientific Frontiers in Research on Extrasolar Planets, ASP Conference Series, vol. 294, pp. 595602.Google Scholar
Traub, W.A. (2011). Terrestrial, habitable-zone exoplanet frequency from Kepler. Astrophys. J. 745, 20.Google Scholar
Traub, W.A. & Jucks, K.A. (2006). Possible aeronomy of extrasolar terrestrial planets. In Atmospheres in the Solar System: Comparative Aeronomy. Geophysical Monograph 130 ed. Mendillo, M., Nagy, A. & Waite, J.H.American Geophysical Union, Washington, DC, pp. 369–278.Google Scholar
Turnbull, M.C., Traub, W.A., Jucks, K.W., Woolf, N.J., Meyer, M.R., Gorlova, N., Skrutskie, M.F. & Wilson, J.C. (2006). Spectrum of a habitable world: Earthshine in the near-infrared. Astrophys. J. 644, 551559.CrossRefGoogle Scholar
Udry, S. et al. (2007). The HARPS search for southern extrasolar planets XI. Super-Earths (5 & 8 M_Earth) in a 3-planet system. Astron. Astrophys. 469, 43.Google Scholar
Valencia, D., Sasselov, D.D. & O'Connell, R.J. (2007). Detailed models of super-Earths: How well can we infer bulk properties? Astrophys. J. 665, 1413.CrossRefGoogle Scholar
von Paris, P., Gebauer, S., Godolt, M., Grenfell, J.L., Hedelt, P., Kitzmann, D., Patzer, A.B.C., Rauer, H. & Stracke, B. (2010). The extrasolar planet Gliese 581d: a potentially habitable planet? Astron. Astrophys. 522, 23.Google Scholar
Williams, D.M. & Pollard, D. (2002). Int. J. Astrobiol. 1, 61.Google Scholar
Woolf, N.J., Smith, P.S., Traub, W.A. & Jucks, K.W. (2002). The spectrum of Earthshine: A pale blue dot observed from the ground. Astrophys. J. 574, 430442.Google Scholar
Wordsworth, R.D., Forget, F., Selsis, F., Millour, E., Charnay, B. & Madeleine, J.-B. (2011). Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. Astrophys. J. 733, 48.Google Scholar