Skip to main content Accessibility help

Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

  • Dailé Avila-Alonso (a1) (a2), Jan M. Baetens (a2), Rolando Cardenas (a1) and Bernard De Baets (a2)

In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

Corresponding author
Hide All
Agardy, T. et al. (2005). Coastal systems. In Ecosystems and Human Well-being: Current State and Trends, ed. Hassan, R., Scholes, R. & Ash, N., pp. 513549. Inland Press, Washington, DC.
ASTMG173–03e1 (2012). Standard tables for reference solar spectral irradiances.
Avila, D., Cardenas, R. & Martin, O. (2013). On the photosynthetic potential in the very early Archean oceans. Orig. Life Evol. Biosph. 43, 6775.
Awramik, S.M. & Sprinkle, J. (1999). Proterozoic stromatolites: the first marine evolutionary biota. Hist. Biol. 13, 241253.
Bishop, J.L., Louris, S.K., Rogoff, D.A. & Rothschild, L.J. (2006). Nanophase iron oxides as a key ultraviolet sunscreen for ancient photosynthetic microbes. Int. J. Astrobiol. 5, 112.
Bjerrum, C. & Canfield, D. (2002). Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417(6885), 159162.
Björn, L.O., Papageorgiou, G.C., Blankenship, R.E. & Govindjee (2009). A viewpoint: why chlorophyll a? Photosynth. Res. 99, 8598.
Blankenship, R., Sadekar, S. & Raymond, J. (2007). The evolutionary transition from anoxygenic to oxygenic photosynthesis. In Evolution of Primary Production in the Sea, ed. Falkowski, P. & Knol, A., pp. 2135. Elsevier, Amsterdam.
Blankenship, R.E. (2010). Early evolution of phytosynthesis. Plant Physiol. 154(2), 434438.
Chen, M., Schliep, M., Willows, R.D., Cai, Z.L., Neilan, B.A. & Scheer, H. (2010). A red-shifted chlorophyll. Science 329, 13181319.
Chen, M., Li, Y., Birch, D. & Willows, R.D. (2012). A cyanobacterium that contains chlorophyll f-a red-absorbing photopigment. FEBS Lett. 586, 32493254.
Chisholm, S.W. (1992). Phytoplankton size. In Primary Productivity and Biogeochemical Cycles in the Sea, ed. Falkowski, P.G. & Woodhead, A.D., pp. 213237. Plenum Press, New York.
Cleaves, H. & Miller, S. (1998). Oceanic protection of prebiotic organic compounds from UV radiation. Proc. Natl. Acad. Sci. USA 95, 72607263.
Cockell, C.S. (1998). The biological effects of UV radiation on early earth – a theoretical evaluation. J. Theor. Biol. 193, 719731.
Cockell, C.S. (2000). Ultraviolet radiation and the photobiology of Earth's early oceans. Orig. Life Evol. Biosp. 30, 467499.
Cockell, C.S. (2001). A photobiological history of Earth. In Ecosystems, Evolution, and Ultraviolet Radiation, ed. Cockell, C.S. & Blaustein, A.R., pp. 135. Springer-Verlag, New York.
Cockell, C.S. (2002). The ultraviolet radiation environment of Earth and Mars: past and present. In Astrobiology the Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 219232. Springer, New York.
Cockell, C.S. & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biol. Rev. 74, 311345.
Cohen, K., Finney, S., Gibbard, P. & Fan, J. (2013). The ICS international chronostratigraphic chart. Episodes 36, 199204.
Comar, C. & Zscheile, F. (1941). Spectroscopic analysis of plant extracts for chlorophyll a and b . Plant Physiol. 16, 651653.
Crowe, S.A. et al. (2008). Photoferrotrophs thrive in an Archean Ocean analogue. Proc. Natl. Acad. Sci. USA 105(41), 1593815943.
Cullen, J., Neale, P. & Lesser, M. (1992). Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258, 646650.
Cullen, J.J., Davis, R.F. & Huot, Y. (2012). Spectral model of depth-integrated water column photosynthesis and its inhibition by ultraviolet radiation. Glob. Biogeochem. Cycles 26, GB1011.
David, L. & Alm, E. (2011). Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469, 9396.
Dillon, J.G. & Castenholz, R.W. (1999). Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation: implications for early photosynthetic life. J. Phycol. 35, 673681.
Dolan, M.F. & Margulis, L. (2002). Early Life: Evolution on the Prepambrian Earth, 2nd edn. University of Masshachusetts, John and Bartlett Publishers Sudbury, Masshachusetts.
Dufresne, A., Garczarek, L. & Partensky, F. (2005). Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 6, R14.
Dvořák, P., Casamatta, D.A., Paulickova, A., Hasler, P., Ondrej, V. & Sanges, R. (2014). Synechococcus: 3 billion years of global dominance. Mol. Ecol. 23, 55385551.
Evstigneev, V.B. (1973). On evolution of the photosynthetic pigments. Orig. Life Evol. Biosph. 4(3), 448454.
Fairchild, T.R., Sanchez, E.A.M., Pacheco, M.L.A.F. & de Moraes Leme, J. (2016). Evolution of Precambrian life in the Brazilian geological record. Int. J. Astrobiol. 11, 309323.
Falkowski, P. (1997). Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272275.
Flombaum, P., Gallegos, J.L., Gordillo, R.A., Rincón, J., Zabala, L.L. & Jiao, N. (2013). Present and future global distributions of the marine. Proc. Natl. Acad. Sci. USA 110(24), 98249829.
Frazier, W.J. & Schwimmer, D.R. (1987). Regional Stratigraphy of North America. Plenum Press, New York.
García-Fernández, J.M., de Marsac, N.T. & Diez, J. (2004). Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol. Mol. Biol. Rev. 68(4), 630638.
Gauger, T., Konhauser, K. & Kappler, A. (2015). Protection of phototrophic iron(II)-oxidizing bacteria from UV irradiation by biogenic iron(III) minerals: implications for early Archean Banded Iron Formation. Geology 43, 10671070.
Grossman, A.R., Bhaya, D., Apt, K.E. & Kehoe, D.M. (1995). Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu. Rev. Genet. 29, 231288.
Grula, J. (2005). Evolution of photosynthesis and biospheric oxygenation contingent upon nitrogen fixation? Int. J. Astrobiol. 4, 251257.
Hawkesworth, C.J. & Kemp, A.I.S. (2006). Evolution of the continental crust. Nature 433, 811817.
Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S. & Storey, C.D. (2012). The generation and evolution of continental crust. J. Geol. Soc. Lond. 167, 229248.
Hessen, D. (2008). Solar radiation and the evolution of live. In Solar Radiation and the Human Health, ed. Bjertness, E., pp. 123132. The Norwegian Academy of Science and Letters, Oslo.
Heubeck, C. & Arndt, N. (2015). Archean environmental conditions. In Encyclopedia of Astrobiology, ed. Gardaud, M. et al. pp. 123125. Springer, Berlin.
Jerlov, N.G. (1976). Marine Optics. Elsevier Scientific Publishing Company, Amsterdam.
Johnson, C., Beard, B. & Roden, E. (2008). The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu. Rev. Earth Plnet. Sci. 36, 457493.
Jørgensen, B.B., Cohen, Y. & Des Marais, D.J. (1987). Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Appl. Environ. Microbiol. 53, 879886.
Kashiyama, Y. et al. (2008). Evidence of global chlorophyll d . Science 321(5889), 658.
Kirk, J.T.O. (2011). Light and Phososynthesis in Aquatic Ecosystems, 3th edn. Cambridge University Press, New York.
Klein, C. (2005). Some Precambrian Banded Iron-Formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral. 90, 14731499.
Knoll, A.H. (2014). Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121.
Kulasooriya, S. (2011). Cyanobacteria: pioneers of planet Earth. Ceylon J. Sci. Biol. Sci. 40, 7188.
Lane, N. (2014). Bioenergetic constraints on the evolution of complex life. In The Origin and Evolution of Eukaryotes, ed. Keeling, P.J. & Koonin, E.V., pp. 7996. E. Cold Spring Harbor Laboratory Press Cold Spring Harbor, New York.
Lane, N. & Martin, W. (2010). The energetics of genome complexity. Nature 467, 929934.
Larkum, A.W.D. (2006). The evolution of chlorophylls and photosynthesis. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, ed. Grimm, B., Porra, R.J., Rüdiger, W. & Scheer, H., pp. 261282. Springer, Netherlands.
Larkum, A.W.D., Chen, M., Li, Y., Schliep, M., Trampe, E., West, J., Salih, A. & Kühl, M. (2012). A novel epiphytic chlorophyll d-containing cyanobacterium isolated from a mangrove-associated red alga. J. Phycol. 48, 13201327.
Litchman, E., Neale, P. & Banaszak, A. (2002). Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limmnol. Oceanogr. 47, 8694.
Lowe, D.R. (1994). Early environments: constraints and opportunities for early evolution. In Early life on Earth, ed. Bengtson, S., pp. 2535. Columbia University Press, New York.
Lunine, J. (2013). Earth: Evolution of a Habitable World, 2dn edn. Cambridge University Press, Cambridge, UK.
Martín, O., Peñate, L., Cárdenas, R. & Horvath, J.E. (2012). The photobiological regime in the very early earth and the emergence of life. In Genesis-in the Beginning: Precursors of Life, Chemical Models and Early Biological Evolution, ed. Seckbach, J., pp. 145156. Springer, Dordrecht, Netherlands.
Miyashita, H., Ikemoto, H., Kurano, N., Miyachi, S. & Chihara, M. (2003). Acaryochloris marina gen. etsp. nov. (Cyanobacteria), anoxygenic photosynthetic prokaryote containing Chl d as a major pigment. J. Phycol. 39, 12471253.
Mloszewska, A., Lalonde, S.V., Whitford, D., Owttrim, G. & Konhauser, K.O. (2014). Archean seawater as a sunscreen: UV attenuation and cyanobacterial growth in Fe-and Si-rich media. In Goldschmidt Geochemistry Conf., 8–13 June, 2014, Sacremento, USA, Abstract no. 1711.
Mloszewska, A., Owttrim, G., Whitford, D., Lalonde, S., Kappler, A. & Konhauser, K. (2015). Silica saved our earliest marine cyanobacteria. In Geochemistry Conf., 16–21 August, 2015, Prague, Czech Republic, Abstract 2153.
Mohr, R., Björn, V., Schliep, M., Kurz, T., Maldener, I., Adams, D.G., Larkum, A.D.W., Chen, M. & Hess, W.R. (2010). A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris . ISME J. 4, 14561469.
Morel, A. (1978). Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep Sea Res. 25, 673688.
Neale, P. & Kieber, D. (2000). Assessing biological and chemical effects of UV in the marine environment: spectral weighting functions. In Causes and Environmental Implications of Increased U.V.-B. Radiation, ed. Hester, R. & Harrison, R., pp. 6183. Royal Society of Chemistry Cambridge, Cambridge.
Neale, P.J., Helbling, E.W. & Zagarese, H.E. (2003). Modulation of UVR exposure and effects by vertical mixing and advection. In UV Effects in Aquatic Organisms and Ecosystems, ed. Helbling, E.W., pp. 109134. Royal Society of Chemistry, Cambridge.
Nisbet, E. (1995). Archaean ecology: a review of evidence for the early development of bacterial biomes, and speculations on the development of a global-scale biosphere. In Early Precambrian Processes, ed. Coward, M. & Rtes, A., pp. 2751. The Geological Society, London.
Nisbet, E., Cann, J. & van Dover, C. (1995). Origins of photosynthesis. Nature 373, 479480.
Noffke, N., Christian, D., Wacey, D. & Hazen, R. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology 12, 11031124.
Olson, J. (2006). Photosynthesis in the Archean era. Photosynth. Res. 88, 109117.
Olson, J.M. & Pierson, B.K. (1986). Photosynthesis 3.5 thousand million years ago. Photosynth. Res. 9, 251259.
Pasek, M.A., Harnmeijer, J.P., Buick, R., Gull, M. & Atlas, Z. (2013). Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA 110(25), 1008910094.
Phoenix, V.R., Konhauser, K.O., Adams, D.G. & Bottrell, S.H. (2001). Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29, 823826.
Proteau, P.J., Gerwick, W.H., Garcia-Pichel, F. & Castenholz, R. (1993). The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49, 825829.
Raven, J.A. (1990). Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and C assimilation pathway. New Phytol. 116, 118.
Santosh, M. (2013). Evolution of continents, cratons and supercontinents: building the habitable Earth. Curr. Sci. 104(7), 871879.
Schirrmeister, B.E., Gugger, M. & Donoghue, P.C.J. (2015). Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58(5), 769785.
Schirrmeister, B.E., Sanchez-Baracaldo, P. & Wacey, D. (2016). Cyanobacterial evolution during the Precambrian. Int. J. Astrobiol. CJO2016, 118.
Singh, S., Kumari, S., Rastogi, R., Singh, K. & Sinha, R. (2008). Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Indian J. Exp. Biol. 46, 717.
Smith, R. & Baker, K. (1981). Optical properties of the clearest natural waters. App. Optics 20, 177184.
Stern, C.R. (2011). Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284308.
Sunda, W.G. & Huntsman, S.A. (2015). High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris . Front. Microbiol. 6, 113.
Taylor, S.R. & McLennan, S.M. (1995). The geochemical evolution of the continental crust. Rev. Geophys. 33, 241265.
Taylor, S.R., & McLennan, S.M. (1997). The origin and evolution of the Earth's continental crust. AGSO J. Aust. Geol. Geophys. 17(1), 5562.
Wong, H.L., Smith, D.L., Visscher, P.T. & Burns, B.P. (2015). Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607.
Xiong, J. & Bauer, C. (2002). Complex evolution of photosynthesis. Annu. Rev. Plant. Biol. 53, 503521.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed