Skip to main content
×
Home
    • Aa
    • Aa

Did nature also choose arsenic?

  • Felisa Wolfe-Simon (a1), Paul C.W. Davies (a2) and Ariel D. Anbar (a1) (a3)
Abstract
Abstract

All known life requires phosphorus (P) in the form of inorganic phosphate (PO43− or Pi) and phosphate-containing organic molecules. Pi serves as the backbone of the nucleic acids that constitute genetic material and as the major repository of chemical energy for metabolism in polyphosphate bonds. Arsenic (As) lies directly below P on the periodic table and so the two elements share many chemical properties, although their chemistries are sufficiently dissimilar that As cannot directly replace P in modern biochemistry. Arsenic is toxic because As and P are similar enough that organisms attempt this substitution. We hypothesize that ancient biochemical systems, analogous to but distinct from those known today, could have utilized arsenate in the equivalent biological role as phosphate. Organisms utilizing such ‘weird life’ biochemical pathways may have supported a ‘shadow biosphere’ at the time of the origin and early evolution of life on Earth or on other planets. Such organisms may even persist on Earth today, undetected, in unusual niches.

Copyright
Corresponding author
e-mail: wolfe@eps.harvard.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S.R. Adams , M.J. Sparkes & H.B. Dixon (1984). The arsonomethyl analogue of adenosine 5′-phosphate. An uncoupler of adenylate kinase. Biochem. J. 221, 829836.

B.R. Ali & H.B. Dixon (1992). Pyridoxal arsenate as a prosthetic group for aspartate aminotransferase. Biochem. J. 284(2), 349352.

S.A. Benner & D. Hutter (2002). Phosphates, DNA, and the search for nonterrean life: a second generation model for genetic molecules. Bioorg. Chem. 30, 6280.

H. Bhattacharjee & B. Rosen (2007). Molecular Microbiology of Heavy Metals, Vol. 6, D.H. Nies & S. Silver (eds). Springer, Berlin, pp. 371406.

J.A. Brandes & A.H. Devol (2002). A global marine-fixed nitrogen isotopic budget: implications for holocene nitrogen cycling. Global Biogeochem. Cycles 16, 1120.

D.E. Canfield (2005). The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 136.

S. Chawla , E.K. Mutenda , H.B. Dixon , S. Freeman & A.W. Smith (1995). Synthesis of 3-arsonopyruvate and its interaction with phosphoenolpyruvate mutase. Biochem. J. 308(3), 931935.

J.B. Corliss , J. Dymond , L.I. Gordon , J.M. Edmond , R.P. von Herzen , R.D. Ballard , K. Green , D. Williams , A. Bainbridge & K. Crane (1979). Submarine thermal springs on the Galapagos Rift. Science 203, 10731083.

B.D. Davis (1958). On the importance of being ionized. Arch. Biochem. Biophys. 78, 497509.

A. Deana & J.G. Belasco (2005). Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev. 19, 25262533.

J. Eigner , H. Boedtker & G. Michaels (1961). The thermal degradation of nucleic acids. Biochim. Biophys Acta. 51, 165168.

M.J. Forrest , J. Ledesma-Vázquez , W. Ussler III, J.T. Kulongoski , D.R. Hilton & H.G. Greene (2005). Gas geochemistry of a shallow submarine hydrothermal vent associated with the el requesón fault zone, bahía concepción, baja California sur, México. Chem. Geol. 224, 8295.

K. Kawamura (1999). Measurement of the rate of RNA hydrolysis in aqueous solution at elevated temperatures using a new monitoring method for hydrothermal reactions. Nucleic Acids Symp. Ser. 42, 289290.

K. Kawamura (2001a). Comparison of the rates of prebiotic formation and hydrolysis of RNA under hydrothermal environments and its implications on the chemical evolution of RNA. Nucleic Acids Symp. Ser. 1, 239240.

K. Kawamura (2001b). Hydrolytic stability of ribose phosphodiester bonds within several oligonucleotides at high temperatures using a real-time monitoring method for hydrothermal reactions. Chem. Lett. 30, 11201121.

K. Kawamura , M. Nagahama & K. Kuranoue (2005). Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA. Adv. Space Res. 35, 16261633.

P.C. Kline & V.L. Schramm (1993). Purine nucleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry 32, 13 21213 219.

T.R. Kulp , S.E. Hoeft , M. Asao , M.T. Madigan , J.T. Hollibaugh , J.C. Fisher , J.F. Stolz , C.W. Culbertson , L.G. Miller & R.S. Oremland (2008). Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321, 967970.

S.A. Kyrtopoulos & D.P. Satchel (1972). Kinetic studies with phosphotransacetylase. II. The acetylation of arsenate by acetyl coenzyme a. Biochim. Biophys. Acta 268, 334343.

R. Lagunas , D. Pestana & J.C. Diez-Masa (1984). Arsenic mononucleotides. Separation by high-performance liquid chromatography and identification with myokinase and adenylate deaminase. Biochemistry 23, 955960.

H. Langner , C. Jackson , T. McDermott & W. Inskeep (2001). Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ. Sci. Technol. 35, 33023309.

M. Levy & S.L. Miller (1998). The stability of the RNA bases: implications for the origins of life. Proc. Natl Acad. Sci. U.S.A. 95, 79337938.

T. Lindahl (1993). Instability and decay of the primary structure of DNA. Nature 362, 709715.

K.A. Maher & D.J. Stevenson (1988). Impact frustration of the origin of life. Nature 331, 612614.

W. Martin & M.J. Russell (2003). On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. Lond. B 358, 5985.

S.L. Miller & J.L. Bada (1988). Submarine hot springs and the origin of life. Nature 334, 609611.

M. Nagahama & K. Kawamura (2002). A new approach for the cooperative chemical evolution of nucleic acids and proteins under the primitive earth environment. Nucleic Acids Symp. Ser. 2, 279280.

R. Oremland , J.F. Stolz & J.T. Hollibaugh (2004). The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol Ecol. 48, pp. 1527.

R.S. Oremland & J.F. Stolz (2003). The ecology of arsenic. Science. 300, pp. 939944.

M.A. Pasek (2008). Rethinking early Earth phosphorus geochemistry. PNAS. 105, 853858.

M. Petrillo , G. Silvestro , P.P.D. Nocera , A. Boccia & G. Paolella (2006). Stem-loop structures in prokaryotic genomes. BMC Genomics 7, 170.

C.S. Roesler , C.W. Culbertson , S.M. Etheridge , R. Goericke , R.P. Kiene , L.G. Miller & R.S. Oremland (2002). Distribution, production, and ecophysiology of picocystis strain ML in Mono Lake, California. Limnol. Oceanogr. 47, 440452.

B.P. Rosen (2002). Biochemistry of arsenic detoxification. FEBS Lett. 529, 8692.

T.A. Rozovskaya , V.O. Rechinsky , R.S. Bibilashvili , M. Karpeisky , N.B. Tarusova , R.M. Khomutov & H.B. Dixon (1984). The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity. Biochem. J. 224, 645650.

M.A. Schoonen & Y. Xu (2001). Nitrogen reduction under hydrothermal vent conditions: Implications for the prebiotic synthesis of chon compounds. Astrobiology 1, 133142.

D.W. Selinger , R.M. Saxena , K.J. Cheung , G.M. Church & C. Rosenow (2003). Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 13, 216223.

S.M. Serkiz , J.D. Allison , E.M. Perdue , H.E. Allen & D.S. Brown (1996). Correcting errors in the thermodynamic database for the equilibrium speciation model MINTEQA2. Water Res. 30, 19301933.

N.H. Sleep & K. Zahnle (1998). Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. 103, 28 52928 544.

S. Slomovic , D. Laufer , D. Geiger & G. Schuster (2005). Polyadenylation and degredation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol. Cell. Biol. 25, 64276435.

L. Slooten & A. Nuyten (1983). Arsenylation of nucleoside diphosphates in Rhodospirillium rubrum chromatophores. Biochim. Biophys. Acta 725, 4959.

P.L. Smedley & D.G. Kinniburgh (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517568.

J.F. Stolz & R.S. Oremland (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23, 615627.

K.L. Von Damm (1990). Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annu. Rev. Earth Planet. Sci. 18, 173204.

F.H. Westheimer (1987). Why nature chose phosphates. Science 235, 11731178.

J.A. Wilkie & J.G. Hering (1998). Rapid oxidation of geothermal arsenic(III) in streamwaters of the Eastern Sierra Nevada. Environ. Sci. Technol. 32, 657662.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: