Skip to main content
×
Home
    • Aa
    • Aa

Life's chirality from prebiotic environments

  • Marcelo Gleiser (a1) and Sara Imari Walker (a2)
Abstract
Abstract

A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

Copyright
Corresponding author
e-mail: marcelo.gleiser@dartmouth.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J.L. Bada (1997). Science 275, 942.

D. Blackmond (2004). Proc. Natl Acad. Sci. U.S.A. 101, 5732.

A. Brandenburg , H.J. Lehto & K.M. Lehto (2007). Astrobiology 7, 725.

R.P. Bywater & K. Conde-Frieboes (2005). Astrobiology 5, 568.

A. Cassan (2012). Nature 481, 167169; http://kepler.nasa.gov/

S.B. Charnley , S.D. Rogers , Y.-J. Kuan & H.-C. Huang (2002). Adv. Space Res. 30, 1419.

C. Chyba & C. Sagan (1992). Nature 355, 125.

J. Cohen (1995). Science 267, 1265.

J.R. Cronin (1989). Adv. Space Res. 9, 59.

P.C.W. Davies & C.H. Lineweaver (2005). Astrobiology 5, 154.

J.D. Dunitz (1996). Proc. Natl Acad. Sci. U.S.A. 93, 14260.

M. Fishkis (2007). Orig. Life Evol. Biosph. 37, 537.

D. Fitz , H. Reiner , K. Plakensteiner & B. Rode (2007). Curr. Chem. Biol. 1, 41.

S. Fox (1973). Pure Appl. Chem 34, 641.

S. Fox (1995). J. Bio. Physics 20, 17.

F. Frank (1953). Biochim. Biophys. Acta 11, 459.

D.G. Fraser , D. Fitz , T. Jakschitz , B.M. Rode (2011). Phys. Chem. Chem. Phys. 13, 831.

W. Gilbert (1986). Nature 319, 618.

M. Gleiser & J. Thorarinson (2006). Orig. Life Evol. Biosph. 36, 501.

M. Gleiser & S.I. Walker (2008). Orig. Life Evol. Biosph. 38, 293.

M. Gleiser & S.I. Walker (2009). Orig. Life Evol. Biosph. 39, 479.

M. Gleiser (2012). Int. J. Astrobiol. 11, 345.

M. Gleiser , B. Nelson & S.I. Walker (2012). Chiral polymerization in open systems from chiral-selective reaction rates, Orig. Life Evol. Biosph 42, 333346.

M. Gleiser (2007). Orig. Life Evol. Biosph. 37, 235.

M. Haken (1983). Synergetics: An Introduction, Springer-Verlag, Berlin.

D. Hochberg & M.P. Zorzano (2007). Phys. Rev. E 76, 0211109.

D. Hochberg (2009). Phys. Rev. Lett. 102, 248101.

D. Hochberg (2010) Phys. Rev. E 81, 016106.

G.F. Joyce (1984). Nature 310, 602.

J.F. Kasting , D.P. Whitmire & R.T. Reynolds (1993). Icarus 101, 108.

M. Kimura (1968). Nature 217, 624.

D.K. Kondepudi & K. Asakura (2001). Acc. Chem. Res. 34, 946.

D.K. Kondepudi & G.W. Nelson (1985). Nature 314, 438441.

D.K. Kondepudi & G.W. Nelson (1983). Phys. Rev. Lett. 50, 1023.

M. Lahav (2007). Orig. Life Evol. Biosph. 37, 371.

A. Lazcano & S.L. Miller (1996). Cell 85, 793.

C.H. Lineweaver (2001). Icarus 151, 307.

P.W. Lucas (2005). Orig. Life Evol. Biosph. 35, 29.

K.A. Maher & D.J. Stevenson (1988). Nature 331, 612.

G. Marcy (2005). Prog. Theor. Phys. Suppl. 158, 24.

S.L. Miller (1953). Science 117, 528.

P.A. Monnard & D. Deamer (2002). Anatom. Rec. 268, 196.

P.A. Monnard (2007). Orig. Life Evol. Biosph. 37, 387.

H.J. Morowitz , B. Heinz & D. Deamer (1988). Orig. Life Evol. Biosph 18, 281.

P.E. Nielsen (2007). Orig. Life Evol. Biosph. 37, 323.

M. Nilsson (2005). Int. J. Astrobiol. 4, 233.

L.E. Orgel (1998b). Trends Biochem. Sci. 23, 491.

L. Orgel (2000). Science 290, 1306.

R. Plasson (2007). Chirality 19, 589.

R. Plasson , H. Bersini & A. Commeyras (2004). Proc. Natl Acad. Sci. U.S.A. 101, 16733.

D. Ring , Y. Wolman , N. Friedmann & S.L. Miller (1972). Proc. Natl Acad. Sci. U.S.A. 69, 765.

M.P. Robertson & S.L. Miller (1995). Nature 375, 772.

Y. Saito & H. Hyuga (2005a). J. Phys. Soc. Japan 74, 535.

A. Salam (1991). J. Mol. Evol. 33, 105.

P.G.H. Sandars (2003). Orig. Life Evol. Biosph. 33, 575.

J.W. Schopf (1993a). Science 260, 640.

N.H. Sleep (1989). Nature 342, 139.

K. Soai , T. Shibata , K. Choji & H. Morioka (1995). Nature 378, 767.

J.T. Trevors (1997). Antonie van Leeuwenhoek 72, 251.

M.A. van Zuilen , A. Lepland & G. Arrhenius (2002). Nature 420, 202.

C. Viedma (2005). Phys. Rev. Lett. 94, 065504.

G. Wächtershäuser (1992). Prog. Biophys. Mol. Biol. 58, 85.

J.A. Wattis & P.V. Coveney (2005). Orig. Life Evol. Biosph. 35, 243.

S.A. Wilde , J.W. Valley , W.H. Peck & C.M. Graham (2005). Nature 409, 175.

Y. Wolman , H. Haverland & S.L. Miller (1972). Proc. Natl Acad. Sci. U.S.A. 69, 809.

Y. Yamagata (1966). J. Theoret. Biol. 11, 495498.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score