Skip to main content
×
Home
    • Aa
    • Aa

Measurements of Oxychlorine species on Mars

  • B. Sutter (a1) (a2), R. C. Quinn (a3), P. D. Archer (a1) (a2), D. P. Glavin (a4), T. D. Glotch (a5), S. P. Kounaves (a6), M. M. Osterloo (a7), E. B. Rampe (a2) (a8) and D. W. Ming (a2)...
Abstract
Abstract

Mars landed and orbiter missions have instrumentation capable of detecting oxychlorine phases (e.g. perchlorate, chlorate) on the surface. Perchlorate (~0.6 wt%) was first detected by the Wet Chemistry Laboratory in the surface material at the Phoenix Mars Landing site. Subsequent analyses by the Thermal Evolved Gas Analyser aboard the same lander detected an oxygen release (~465°C) consistent with the thermal decomposition of perchlorate. Recent thermal analysis by the Mars Science Laboratory's Sample Analysis at Mars instrument has also indicated the presence of oxychlorine phases (up to 1.2 wt%) in Gale Crater materials. Despite being at detectable concentrations, the Chemistry and Mineralogy (CheMin) X-ray diffractometer has not detected oxychlorine phases. This suggests that Gale Crater oxychlorine may exist as poorly crystalline phases or that perchlorate/chlorate mixtures exist, so that individual oxychlorine concentrations are below CheMin detection limits (~1 wt%). Although not initially designed to detect oxychlorine phases, reinterpretation of Viking Gas Chromatography/Mass Spectrometer data also suggest that oxychlorine phases are present in the Viking surface materials. Remote near-infrared spectral analyses by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument indicate that at least some martian recurring slope lineae (RSL) have spectral signatures consistent with the presence of hydrated perchlorates or chlorates during the seasons when RSL are most extensive. Despite the thermal emission spectrometer, Thermal Emission Imaging System, Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité and CRISM detection of hundreds of anhydrous chloride (~10–25 vol%) deposits, expected associated oxychlorine phases (>5–10 vol%) have not been detected. Total Cl and oxychlorine data sets from the Phoenix Lander and the Mars Science Laboratory missions could be used to develop oxychlorine versus total Cl correlations, which may constrain oxychlorine concentrations at other locations on Mars by using total Cl determined by other missions (e.g. Viking, Pathfinder, MER and Odyssey). Development of microfluidic or ‘lab-on-a-chip’ instrumentation has the potential to be the next generation analytical capability used to identify and quantify individual oxychlorine species on future landed robotic missions to Mars.

Copyright
Corresponding author
e-mail: brad.sutter-2@nasa.gov
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R.J. Acheson & P.W.M. Jacobs (1970). The thermal decomposition of magnesium perchlorate and of ammonium perchlorate and magnesium perchlorate mixtures. J. Phys. Chem. 74, 281288.

B.C. Clark , A.K. Baird , H.J. Rose , P. Toulmin , R.P. Christian , W.C. Kelliher , A.J. Castro , C.D. Rowe , K. Keil & G.R. Huss (1977). The Viking X ray fluorescence experiment: Analytical methods and early results J. Geophys. Res. 82, 45774594.

P.D. Archer Jr. (2014). Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. J. Geophys. Res. Planet. 119, 237254. DOI:10.1002/2013JE004493.

R.E. Arvidson (2014). Ancient aqueous environments at Endeavour Crater, Mars. Science 343. DOI:10.1126/science.1248097.

K. Biemann (1974). Test results on the Viking gas chromatograph–mass spectrometer experiment. Orig. Life Evol. Biosph. 5, 417430.

K. Biemann (1979). The implications and limitations of the findings of the Viking organic analysis experiment. J. Mol. Evol. 14, 6570.

K. Biemann & J.L. Bada (2011). Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro-González et al. J. Geophys. Res. Planet. 116, E12001. DOI:10.1029/2011JE003869.

K. Biemann , J. Oro , P. Toulmin , L.E. Orgel , A.O. Nier , D.M. Anderson & J.A. Biller (1976). Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars. Science 194, 7276.

K. Biemann (1977). The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res. 82, 46414658.

D.L. Bish (2013). X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale Crater. Science 341. DOI:10.1126/science.1238932.

J.L. Bishop , R. Quinn & M.D. Dyar (2014). What lurks in the martian rocks and soil? Investigations of sulfates, phosphates, and perchlorates spectral and thermal properties of perchlorate salts and implications for Mars. Amer Miner 99, 15801592.

D.F. Blake (2012). Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci. Rev. 170, 341399.

D.F. Blake (2013). Curiosity at Gale Crater, Mars: characterization and analysis of the Rocknest sand shadow. Science 341. DOI:10.1126/science.1239505.

W.V. Boynton (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297. DOI:10.1126/science.1073722.

J. Brückner , G. Dreibus , R. Rieder & H. Wänke (2003). Refined data of the alpha proton X-ray spectrometer analyses of soils and rocks at the Mars Pathfinder site: implications for surface chemistry. J. Geophys. Res. Planet. 108, 8094. doil:10.1029/2003JE002060.

K.M. Cannon , B. Sutter , D.W. Ming , W.V. Boynton & R. Quinn (2012). Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA). Geophys. Res. Lett. 39, L13203.

D.C. Catling , M.W. Claire , K.J. Zahnle , R.C. Quinn , B.C. Clark , M.H. Hecht & S. Kounaves (2010). Atmospheric origins of perchlorate on Mars and in the Atacama. J. Geophys. Res. 115, E00E11. DOI:10.1029/2009JE003425.

B.L. Carrier & S.P. Kounaves (2015). The origins of perchlorate in the Martian soil. Geophys. Res. Lett. 42, 37393745.

S.J. Chipera & D.L. Bish (2002). FULLPAT: a full pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns. J. Appl. Crystallogr. 35, 744749.

B.C. Clark & A.K. Baird (1979). Is the martian lithosphere sulfur rich? J. Geophys. Res. 84, 83958403.

B.C. Clark , A.K. Baird , R.J. Weldon , D.M. Tsusaki , L. Schnable & M.P. Candelaria (1982). Chemical composition of martian fines. J. Geophys. Res. 87, 1005910067.

B.C. Clark (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240, 7394.

S.C. Cull , R.E. Arvidson , J.G. Catalano , D.W. Ming , R.V. Morris , M.T. Mellon & M. Lemmon (2010). Concentrated perchlorate at the Mars Phoenix landing site: evidence for thin film liquid water on Mars. Geophys. Res. Lett. 37, L22203. DOI:10.1029/2010GL045269.

C.J. Evenhuis , R.M. Guijt , M. Macka , P.R. Haddad (2004). Determination of inorganic anions using microfluidic devices. Electrophoresis 25, 36023624.

C. Freissinet (2015). Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J. Geophys. Res. Planet. 120, 495514. DOI:10.1002/2014JE004737.

R. Gellert (2006). Alpha particle X-ray spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res. 111, E02S05. DOI:10.1029/2005JE002555.

D.P. Glavin (2013). Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planet. 118, 19551973. DOI:10.1002/jgre.20144.

T.D. Glotch , J.L. Bandfield , L.L. Tornabene , H.B. Jensen & F.P. Seelos (2010). Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys. Res. Lett. 37, L16202. DOI:10.1029/2010GL044557.

T.D. Glotch , J.L. Bandfield , M.J. Wolff , J.A. Arnold & C. Che (2016). Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. J. Geophys. Res. Planets, 121. DOI:10.1002/2015JE004921.

W. Goetz (2010). Microscopy analysis of soils at the Phoenix landing site, Mars: classification of soil particles and description of their optical and magnetic properties. J. Geophys. Res. Planet. 115, E00E22. DOI:10.1029/2009JE003437.

P.R. Haddad , P.N. Nesterenko & W. Buchberger (2008). Recent developments and emerging directions in ion chromatography. J. Chromatogr. A 1184, 456473.

J. Hanley , V.F. Chevrier , D.J. Berget & R.D. Adams (2012). Chlorate salts and solutions on Mars. Geophys. Res. Lett. 39, L08201. DOI:10.1029/2012GL051239.

J. Hanley , V.F. Chevrier , S. Barrows , C. Swaffer & T.S. Altheide (2015). Near- and mid-infrared reflectance spectra of hydrated oxychlorine salts with implications for Mars. J. Geophys. Res. Planet 120, 14151426. DOI:10.1002/2013JE004575.

J.H. Hoffman , R.C. Chaney & H. Hammack (2008). Phoenix Mars mission – the thermal evolved gas analyzer. J. Am. Soc. Mass Spectrom. 19, 13771383.

H.B. Jensen & T.D. Glotch (2011). Investigation of the near-infrared spectral character of putative Martian chloride deposits. J. Geophys. Res. 116, E00J03. DOI:10.1029/2011JE003887.

S.P. Kounaves (2009). The MECA wet chemistry laboratory on the 2007 phoenix mars Scout lander. J. Geophys. Res. 114, E00A19. DOI:10.1029/2008JE003084.

S.P. Kounaves (2010). Wet chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: data analysis and results. J. Geophys. Res. Planet. 115, E00E10. DOI:10.1029/2009JE003424.

S.P. Kounaves , A. Nikos , N.A. Chaniotakis , V.F. Chevrier , B.L. Carrier , K.E. Folds , V.M. Hansen , K.M. McElhoney , G.D. O'Neil & A.W. Weber (2014a). Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232, 226231.

S.P. Kounaves , B.L. Carrier , G.D. O'Neil , S.T. Stroble & M.W. Claire (2014b). Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics. Icarus 229, 206213.

L.A. Leshin (2013). Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity Rover. Science 341, 1238937–1–9.

P.R. Mahaffy (2012). The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170, 401478.

G.M. Marion , D.C. Catling , K.J. Zahnle & M.W. Claire (2010). Modeling aqeous perchlorate chemistries with applications to Mars. Icarus 207, 675685.

M.M. Markowitz (1963). A basis for the prediction of the thermal decomposition products of metal perchlorates. J. Inorg. Nucl. Chem. 25, 407414.

A.C. McAdam (2014). Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. J. Geophys. Res. Planet. 119, 373393.

A. Migdal-Mikuli & J. Hetmańczyk (2008). Thermal behavior of [Ca(H2O)4](ClO4)2 and [Ca(NH3)6](ClO4)2 . J. Therm. Anal. Calor. 91, 529534.

F.A. Miller & C.H. Wilkins (1952). Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 24, 12531294.

D.W. Ming (2008). Geochemical properties of rocks and soils in Gusev Crater, Mars: results of the alpha particle X-ray spectrometer from Cumberland Ridge to home plate. J. Geophys. Res. 113, E12S39. DOI:10.1029/2008JE003195.

D.W. Ming (2014). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 343, 1245267. http://doi.org/10.1126/science.1245267.

R.V. Morris (2006). Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, E12S15. DOI:10.1029/2006JE002791.

S.L. Murchie (2009). A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06. DOI:10.1029/2009JE003342.

J.P. Murrihy (2001). Ion chromatography on-chip. J. Chromatography A 924, 233238.

R. Navarro-González & C.P. McKay (2011). Reply to comment by Biemann and Bada on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars,” J. Geophys. Res. Planet. 116, E12002. DOI:10.1029/2011JE003880.

R. Navarro-González , E. Vargas , J. de la Rosa , A.C. Raga & C.P. McKay (2010). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. Planet. 115, E12010. DOI:10.1029/2010JE003599.

L. Ojha , M.B. Wilhelm , S.L. Murchie , A.S. McEwen , J.L. Wray , J. Hanley , M. Massé & M. Chojnacki (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832.

M.M. Osterloo , V.E. Hamilton , J.L. Bandfield , T.D. Glotch , A.M. Baldridge , P.R. Christensen , L.L. Tornabene & F.S. Anderson (2008). Chloride-bearing materials in the southern highlands of Mars. Science 319, 16511654.

M.M. Osterloo , F.S. Anderson , V.E. Hamilton & B.M. Hynek (2010). Geologic context of proposed chloride bearing materials on Mars. J. Geophys. Res. 115, E10012. DOI:10.1029/2010JE003613.

L. Pejov & V. Petruševski (2002). Fourier transform infrared study of perchlorate (35ClO4 and 37ClO4 ) anions isomorphously isolated in potassium permanganate matrix. Vibrational anharmonicity and pseudo-symmetry effects. J. Phys. Chem. Sol. 63, 2873–1881.

B. Rao , P.B. Hatzinger , J.K. Bohlke , N.C. Sturchio , F.D. Eckardt & W.A. Jackson (2010). Natural chlorate in the environment: application of a new IC-ESI/MS/MS method with a Cl18O3-internal standard. Environ. Sci. Technol. 44, 84298434.

R. Rieder , T. Economou , H. Wanke , A. Turkevich , J. Crisp , J. Brückner , G. Dreibus & H.Y. McSween (1997). The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the x-ray mode. Science 278, 17711774.

R. Rieder (2004). Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306, 17461749.

K. Robertson & D. Bish (2011). Stability of phases in the Mg(ClO4)2·nH2O system and implications for perchlorate occurrences on Mars. J. Geophys. Res. Planet. 116, E07006. DOI:10.1029/2010JE003754.

O. Ruesch , F. Poulet , M. Vincendon , J.-P. Bibring , J. Carter , G. Erkeling , B. Gondet , H. Hiesinger , A. Ody & D. Reiss (2012). Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. J. Geophys. Res. 117, E00J13. DOI:10.1029/2012JE004108.

W.K. Rudloff & E.S. Freeman (1970). Catalytic effect of metal oxides on thermal decomposition reactions. II. The catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by thermal analysis methods. J. Phys. Chem. 74, 33173324.

S.W. Ruff , P.R. Christensen , P.W. Barbera & D.L. Anderson (1997). Quantitative thermal emission spectroscopy of minerals: a laboratory technique for measurement and calibration. J. Geophys. Res. 102, 1489914913. DOI:10.1029/97JB00593.

D.R. Rushneck , A.V. Diaz , D.W. Howarth , J. Rampacek , K.W. Olson , W.D. Dencker , P. Smith , L. McDavid , A. Tomassian , M. Harris , K. Bulota , K. Biemann , A.L. LaFleur , J.E. Biller , T. Owen (1978). Viking gas chromatograph–mass spectrometer. Rev. Sci. Instrum. 49, 817834. http://doi.org/doi:10.1063/1.1135623

K.D. Seelos (2008). Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites. J. Geophys. Res. Planet. 113, E00A13. DOI:10.1029/2008JE003088.

J.C. Stern (2015). Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale Crate, Mars. Proc. Natl. Acad. Sci. U.S.A. 112, 4254–4250.

B. Sutter , J.B. Dalton , S.A. Ewing , R. Amundson & C.P. McKay (2007). Terrestrial analogs for interpretation of infrared spectra from the martian surface and subsurface: sulfate, nitrate, carbonate, and phyllosilicate-bearing Atacama Desert soils. J. Geophys. Res. 112, G04S10. DOI:10.1029/2006JG000313.

J.D. Toner , D.C. Catling & B. Light (2014). Soluble salts at the Phoenix Lander site, Mars: a reanalysis of the Wet Chemistry Laboratory data. Geochim. Cosmochim. Acta 136, 142168.

D.T. Vaniman (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343. 10.1126/science.1243480.

J.J. Wray , S.L. Murchie , S.W. Squyres , F.P. Seelos & L.L. Tornabene (2009). Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology 37, 10431046.

S.-H. Wu , J.-H. Chi , C.-C. Huang , N.-K. Lin , J.-J. Peng & C.-M. Shu (2010). Thermal hazard analyses and incompatible reaction evaluation of hydrogen peroxide by DSC. J. Therm. Anal. Calorim. 102, 563568.

A.S. Yen (2006). Nickel on Mars: constraints on meteoritic material at the surface. J. Geophys. Res. 111, E12S11. DOI:10.1029/2006JE002797.

A.P. Zent & C.P. McKay (1994). The chemical reactivity of the martian soil and implications for future missions. Icarus 108, 146157.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 119 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2017. This data will be updated every 24 hours.