Skip to main content
    • Aa
    • Aa

Sustainable life support on Mars – the potential roles of cyanobacteria

  • Cyprien Verseux (a1) (a2), Mickael Baqué (a1), Kirsi Lehto (a3), Jean-Pierre P. de Vera (a4), Lynn J. Rothschild (a5) and Daniela Billi (a1)...

Even though technological advances could allow humans to reach Mars in the coming decades, launch costs prohibit the establishment of permanent manned outposts for which most consumables would be sent from Earth. This issue can be addressed by in situ resource utilization: producing part or all of these consumables on Mars, from local resources. Biological components are needed, among other reasons because various resources could be efficiently produced only by the use of biological systems. But most plants and microorganisms are unable to exploit Martian resources, and sending substrates from Earth to support their metabolism would strongly limit the cost-effectiveness and sustainability of their cultivation. However, resources needed to grow specific cyanobacteria are available on Mars due to their photosynthetic abilities, nitrogen-fixing activities and lithotrophic lifestyles. They could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources. Here we give insights into how and why cyanobacteria could play a role in the development of self-sustainable manned outposts on Mars.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sustainable life support on Mars – the potential roles of cyanobacteria
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Sustainable life support on Mars – the potential roles of cyanobacteria
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Sustainable life support on Mars – the potential roles of cyanobacteria
      Available formats
Corresponding author
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. Agarwal , S.S. Rane & J.K. Sainis (2008). Effects of 60Co γ radiation on thylakoid membrane functions in Anacystis nidulans. J. Photochem. Photobiol. 91, 919.

S. Aikawa , A. Joseph , R. Yamada , Y. Izumi , T. Yamagishi , F. Matsuda , H. Kawai , J.-S. Chang , T. Hasunuma & A. Kondo (2013). Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ. Sci. 6, 18441849.

C.R. Andersson , N.F. Tsinoremas , J. Shelton , N.V. Lebedeva , J. Yarrow , H. Min & S.S. Golden (2000). Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol. 305, 527542.

M. Arai , K. Tomita-Yokotani , S. Sato , H. Hashimoto , M. Ohmori & M. Yamashita (2008). Growth of terrestrial cyanobacterium, Nostoc sp., on Martian Regolith Simulant and its vacuum tolerance. Biol. Sci. Space 22, 817.

M. Averner , B. Moore , I. Bartholomew & R. Wharton (1984). Atmosphere behavior in gas-closed mouse-algal systems: an experimental and modelling study. Adv. Space Res. 4, 231239.

M. Banerjee & V. Verma (2009). Nitrogen fixation in endolithic cyanobacterial communities of the McMurdo Dry Valley, Antarctica. ScienceAsia 35, 215219.

M. Baqué , C. Verseux , E. Rabbow , J.-P.P. de Vera & D. Billi (2014). Detection of maromolecules in desert cyanobacteria mixed with a lunar mineral analogue after space simulations. Orig. Life Evol. Biosph. 44, 209221.

A.S. Beliaev (2014). Inference of interactions in cyanobacterial-heterotrophic co-cultures via transcriptome sequencing. ISME J. 8, 22432255.

M.R. Benoit & D.M. Klaus (2007). Microgravity, bacteria, and the influence of motility. Adv. Space Res. 39, 12251232.

B. Bergman , C. Johansson & E. Soderback (1992). The Nostoc-Gunnera symbiosis. New Phytol. 122, 379400.

B.M. Berla , R. Saha , C.M. Immethun , C.D. Maranas , T.S. Moon & H.B. Pakrasi (2013). Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 4, 246.

D. Billi (2012). Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space. Orig. Life Evol. Biosph. 42, 235245.

D. Billi , E.I. Friedmann , K.G. Hofer , M.G. Caiola & R. Ocampo-Friedmann (2000a). Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66, 14891492.

D. Billi , M. Baqué , H. Smith & C. McKay (2013). Cyanobacteria from extreme deserts to space. Adv. Microbiol. 3, 8086.

A.J. Bloom , S.S. Sukrapanna & R.L. Warner (1992). Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99, 12941301.

V. Blüm , J. Gitelson , G. Horneck & K. Kreuzberg (1994). Opportunities and constraints of closed man-made ecological systems on the moon. Adv. Space Res. 14, 271280.

G. Boison & A. Mergel (2004). Bacterial life and dinitrogen fixation at a gypsum rock. Appl. Environ. Microbiol. 70, 70707077.

D.T. Britto & H.J. Kronzucker (2002). NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567584.

A.K. Bruce (1964). Extraction of the radioresistant factor of Micrococcus radiodurans. Radiat. Res. 22, 155164.

A.K. Chaurasia , A. Parasnis & S.K. Apte (2008). An integrative expression vector for strain improvement and environmental applications of the nitrogen fixing cyanobacterium, Anabaena sp. strain PCC7120. J. Microbiol. Methods 73, 133141.

P.R. Christensen (2001). Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106, 2382323871.

B.C. Clark , A.K. Baird , R.J. Weldon , D.M. Tsusaki , L. Schnabel & M.P. Candelaria (1982). Chemical composition of Martian fines. J. Geophys. Res. Solid Earth 87, 1005910067.

S.M. Clifford , J. Lasue , E. Heggy , J. Boisson , P. McGovern & M.D. Max (2010). Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001.

C.S. Cockell (2010). Geomicrobiology beyond Earth: microbe–mineral interactions in space exploration and settlement. Trends Microbiol. 18, 308314.

C.S. Cockell (2014). Trajectories of Martian habitability. Astrobiology 14, 182203.

C.S. Cockell , D.C. Catling , W.L. Davis , K. Snook , R.L. Kepner , P. Lee & C.P. McKay (2000). The ultraviolet environment of Mars: biological implications past, present, and future. Icarus 146, 343359.

R.B. Coffin (1989). Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnol. Oceanogr. 34, 531542.

T. Conrad (2011). Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 7, 509.

C.C. Crawford , J.E. Hobbie & K.L. Webb (1974). The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55, 551563.

R. Dahlgren , S. Shoji & M. Nanzyo (1993). Mineralogical characteristics of volcanic ash soils. In Volcanic Ash Soils – Genesis, Properties and Utilization, ed. S. Shoji & M. Nanzyo , pp. 101143. Elsevier Science Ltd, Amsterdam.

E. de Crecy , S. Jaronski , B. Lyons , T.J. Lyons & N.O. Keyhani (2009). Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 9, 74.

J. Dexter & P. Fu (2009). Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2, 857.

D. Dienst , J. Georg , T. Abts , L. Jakorew , E. Kuchmina , T. Börner , A. Wilde , U. Dühring , H. Enke & W.R. Hess (2014). Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol. Biofuels 7, 21.

G.C. Dismukes , D. Carrieri , N. Bennette , G.M. Ananyev & M.C. Posewitz (2008). Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235240.

F. Domain , L. Houot , F. Chauvat & C. Cassier-Chauvat (2004). Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Mol. Microbiol. 53, 6580.

A. Drysdale , M. Ewert & A. Hanford (2003). Life support approaches for Mars missions. Adv. Space Res. 31, 5161.

A. Drysdale , T. Nakamura , N. Yorio , J. Sager & R. Wheeler (2008). Use of sunlight for plant lighting in a bioregenerative life support system – equivalent system mass calculations. Adv. Space Res. 42, 19291943.

A.E. Drysdale , C.J. Rutkze , L.D. Albright & R.L. LaDue (2004). The minimal cost of life in space. Adv. Space Res. 34, 15021508.

D.C. Ducat , J.C. Way & P.A. Silver (2011). Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 29, 95103.

D.E. Dykhuizen (1993). Chemostats used for studying natural selection and adaptive evolution. Methods Enzymol. 224, 613631.

D. Eldridge & R. Greene (1994). Microbiotic soil crusts-a review of their roles in soil and ecological processes in the rangelands of Australia. Soil Res. 32, 389415.

S.F. Elena & R.E. Lenski (2003). Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457469.

P. Fajardo-Cavazos , S.M. Waters , A.C. Schuerger , S. George , J.J. Marois & W.L. Nicholson (2012). Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system. Astrobiology 12, 258270.

M. Ferrer , T.N. Chernikova , M.M. Yakimov , P.N. Golyshin & K.N. Timmis (2003). Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21, 12661267.

L.A. Finney & T.V. O'Halloran (2003). Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931936.

E.I. Friedmann & R. Ocampo (1976). Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic desert ecosystem. Science 193, 12471249.

G. Gao , B. Tian , L. Liu , D. Sheng , B. Shen & Y. Hua (2003). Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair 2, 14191427.

J. Gitelson (1992). Biological life-support systems for Mars mission. Adv. Space Res. 12, 167192.

M. Godlewski & B. Adamczyk (2007). The ability of plants to secrete proteases by roots. Plant Physiol. Biochem. 45, 657664.

R.P. Goldman & M. Travisano (2011). Experimental evolution of ultraviolet radiation resistance in Escherichia coli. Evolution 65, 34863498.

J. Gómez-Elvira (2014). Curiosity's Rover Environmental Monitoring Station: overview of the first 100 sols. J. Geophys. Res.: Planets 119, 16801688.

J.P. Grotzinger (2014). A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 343, 1242777.

F. Guerrero , V. Carbonell , M. Cossu , D. Correddu & P.R. Jones (2012). Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS ONE 7, e50470.

L. Hendrickx & M. Mergeay (2007). From the deep sea to the stars: human life support through minimal communities. Curr. Opin. Microbiol. 10, 231237.

L. Hendrickx , H. De Wever , V. Hermans , F. Mastroleo , N. Morin , A. Wilmotte , P. Janssen & M. Mergeay (2006). Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 157, 7786.

A. Herrera , C.S. Cockell , S. Self , M. Blaxter , J. Reitner , T. Thorsteinsson , G. Arp , W. Dröse & A.G. Tindle (2009). A cryptoendolithic community in volcanic glass. Astrobiology 9, 369381.

S. Hertzberg & A. Jensen (1989). Studies of alginate immobilized marine microalgae. Bot. Marina 32, 267274.

G. Horneck (2003). HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: lunar missions. Adv. Space Res. 31, 23892401.

G. Horneck (2006). HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part II: missions to Mars. Adv. Space Res. 38, 752759.

G. Horneck , D.M. Klaus & R.L. Mancinelli (2010). Space microbiology. Microbiol. Mol. Biol. Rev. 74, 121156.

P.R. Jones (2014). Genetic instability in cyanobacteria – an elephant in the room? Front. Bioeng. Biotechnol. 2, Art. 12.

Y. Kanesaki , Y. Shiwa , N. Tajima , M. Suzuki , S. Watanabe , N. Sato , M. Ikeuchi & H. Yoshikawa (2012). Identification of substrain-specific mutations by massively parallel whole-genome resequencing of synechocystis sp. PCC 6803. DNA Res. 19, 6779.

N. Kozyrovska (2006). Growing pioneer plants for a lunar base. Adv. Space Res. 37, 9399.

Y. Langevin , F. Poulet , J.-P. Bibring & B. Gondet (2005). Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307, 15841586.

S.Y. Lee (2012). Metabolic engineering and synthetic biology in strain development. ACS Synth. Biol. 1, 491492.

K.M. Lehto , H.J. Lehto & E.A. Kanervo (2006). Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Res. Microbiol. 157, 6976.

A. Le Postollec (2009). Monte Carlo simulation of the radiation environment encountered by a biochip during a space mission to Mars. Astrobiology 9, 311323.

D. Lipson & T. Näsholm (2001). The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128, 305316.

J. Liu , V.E. Bukatin & A.A. Tsygankov (2006). Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense cultures exposed to nitrogen limitations. Int. J. Hydrog. Energy 31, 15911596.

Y. Liu , C.S. Cockell , G. Wang , C. Hu , L. Chen & R. De Philippis (2008). Control of Lunar and Martian dust – experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. Astrobiology 8, 7586.

P. Marlière , J. Patrouix , V. Döring , P. Herdewijn , S. Tricot , S. Cruveiller , M. Bouzon & R. Mutzel (2011). Chemical evolution of a bacterium's genome. Angew. Chem. 50, 71097114.

M. Matsuoka , K. Takahama & T. Ogawa (2001). Gene replacement in cyanobacteria mediated by a dominant streptomycin-sensitive rps12 gene that allows selection of mutants free from drug resistance markers. Microbiology 147, 20772087.

A.S. McEwen , L. Ojha , C.M. Dundas , S.S. Mattson , S. Byrne , J.J. Wray , S.C. Cull , S.L. Murchie , N. Thomas & V.C. Gulick (2011). Seasonal flows on warm Martian slopes. Science 333, 740743.

C.P. McKay & M. Marinova (2001). The physics, biology, and environmental ethics of making Mars habitable. Astrobiology 1, 89110.

S.M. McLennan (2014). Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 343, 1244734.

H.Y. McSween (1994). What we have learned about Mars from SNC meteorites. Meteoritics 29, 757779.

H.Y. McSween , G.J. Taylor & M.B. Wyatt (2009). Elemental composition of the Martian crust. Science 324, 7367373679.

A.A. Menezes , J. Cumbers , J.A. Hogan & A.P. Arkin (2014). Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12, 20140715.

X. Miao , Q. Wu , G. Wu & N. Zhao (2003). Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 218, 7177.

D.W. Ming (2014). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science 343, 124526.

K.B. Möllers , D. Cannella , H. Jørgensen & N.-U. Frigaard (2014). Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels 7, 64.

M. Montague , G.H. McArthur , C.S. Cockell , J. Held , W. Marshall , L.A. Sherman , N. Wang , W.L. Nicholson , D.R. Tarjan & J. Cumbers (2012). The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12, 11351142.

K. Mori , H. Ohya , K. Matsumoto & H. Furune (1987). Sunlight supply and gas exchange systems in the microalgal bioreactor. Adv. Space Res. 7, 4752.

R.V. Morris (2004). Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit Rover. Science 305, 833836.

J.F. Mustard (2008). Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305309.

T. Näsholm , K. Kielland & U. Ganeteg (2009). Uptake of organic nitrogen by plants. New Phytol. 182, 3148.

J.U. Navarrete , I.J. Cappelle , K. Schnittker & D.M. Borrok (2012). Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria. Int. J. Astrobiol. 12, 123134.

W.L. Nicholson , P. Fajardo-Cavazos , J. Fedenko , J.L. Ortíz-Lugo , A. Rivas-Castillo , S.M. Waters & A.C. Schuerger (2010). Exploring the low-pressure growth limit: evolution of Bacillus subtilis in the laboratory to enhanced growth at 5 kilopascals. Appl. Environ. Microbiol. 76, 75597565.

W.L. Nicholson , K. Krivushin , D. Gilichinsky & A.C. Schuerger (2013). Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc. Natl. Acad. Sci. U.S.A. 110, 666671.

C.A. Nickerson , C. Mark Ott , S.J. Mister , B.J. Morrow , L. Burns-Keliher & D.L. Pierson (2000). Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 68, 31473152.

K. Olsson-Francis & C.S. Cockell (2010). Use of cyanobacteria for in-situ resource use in space applications. Planet. Space Sci. 58, 12791285.

K. Olsson-Francis , R. de la Torre & C.S. Cockell (2010). Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl. Environ. Microbiol. 76, 21152121.

R. Patnaik , S. Louie , V. Gavrilovic , K. Perry , W.P.C. Stemmer , C.M. Ryan & S. del Cardayré (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 20, 707712.

C. Paungfoo-Lonhienne , T.G.A. Lonhienne , D. Rentsch , N. Robinson , M. Christie , R.I. Webb , H.K. Gamage , B.J. Carroll , P.M. Schenk & S. Schmidt (2008). Plants can use protein as a nitrogen source without assistance from other organisms. Proc. Natl. Acad. Sci. U.S.A. 105, 45244529.

A.A. Pavlov , G. Vasilyev , V.M. Ostryakov , A.K. Pavlov & P. Mahaffy (2012). Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays. Geophys. Res. Lett. 39, L13202.

E.C. Pollard (1965). Theoretical studies on living systems in the absence of mechanical stress. J. Theor. Biol. 8, 113123.

L. Poughon , B. Farges , C.G. Dussap , F. Godia & C. Lasseur (2009). Simulation of the MELiSSA closed loop system as a tool to define its integration strategy. Adv. Space Res. 44, 13921403.

O. Pulz & W. Gross (2004). Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635648.

H. Qiang , Y. Zarmi & A. Richmond (1998). Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur. J. Phycol. 33, 165171.

N. Quintana , F. Van der Kooy , M.D. Van de Rhee , G.P. Voshol & R. Verpoorte (2011). Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 91, 471490.

L.J. Rothschild (2010). A powerful toolkit for synthetic biology: over 3.8 billion years of evolution. Bioessays 32, 304313.

L.J. Rothschild & R.L. Mancinelli (2001). Life in extreme environments. Nature 409, 10921101.

G. Scalzi , L. Selbmann , L. Zucconi , E. Rabbow , G. Horneck , P. Albertano & S. Onofri (2012). LIFE experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Orig. Life Evol. Biosph. 42, 253262.

M.A. Schneegurt , B. Arieli , J.D. McKeehen , S.D. Stephens , S.S. Nielsen , P.R. Saha , P.R. Trumbo & L.A. Sherman (1995). Compositional and toxicological evaluation of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142. Aquaculture 134, 339349.

A.C. Schuerger , R. Ulrich , B.J. Berry & W.L. Nicholson (2013). Growth of Serratia liquefaciens under 7 mbar, 0°C, and CO2-enriched anoxic atmospheres. Astrobiology 13, 115131.

L.M. Shields , L.W. Durrell & A.H. Sparrow (1961). Preliminary observations on radio-sensitivity of algae and fungi from soils of the Nevada test site. Ecology 42, 440441.

J. Shiloach & R. Fass (2005). Growing E. coli to high cell density – a historical perspective on method development. Biotechnol. Adv. 23, 345357.

S.E. Silverstone & M. Nelson (1996). Food production and nutrition in Biosphere 2: results from the first mission September 1991 to September 1993. Adv. Space Res. 18, 4961.

S. Silverstone , M. Nelson , A. Alling & J. Allen (2003). Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base. Adv. Space Res. 31, 6975.

S. Silverstone , M. Nelson , A. Alling & J.P. Allen (2005). Soil and crop management experiments in the Laboratory Biosphere: an analogue system for the Mars on Earth® facility. Adv. Space Res. 35, 15441551.

S. Singh (2014). A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J. Appl. Microbiol. 117, 12211244.

D. Slade & M. Radman (2011). Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75, 133191.

S.W. Squyres (2012). Ancient impact and aqueous processes at Endeavour Crater, Mars. Science 336, 570576.

B. Stevenson & J. Waterbury (2006). Isolation and identification of an epibiotic bacterium associated with heterocystous Anabaena cells. Biol. Bull. 210, 7377.

V.N. Sychev , M.A. Levinskikh & Y.Y. Shepelev (2003). The biological component of the life support system for a Martian expedition. Adv. Space Res. 31, 16931698.

K. Takahama , M. Matsuoka , K. Nagahama & T. Ogawa (2003). Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J. Biosci. Bioeng. 95, 302305.

K. Takahama , M. Matsuoka , K. Nagahama & T. Ogawa (2004). High-frequency gene replacement in cyanobacteria using a heterologous rps12 gene. Plant Cell Physiol. 45, 333339.

D. Thomas , S. Sullivan , A. Sprice & S. Zimmerman (2005). Common freshwater cyanobacteria grow in 100% CO2. Astrobiology 5, 6674.

D.T. Vaniman (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 343, 1243480.

C. Verseux , I.G. Paulino-Lima , M. Baqué , L.J. Rothschild & D. Billi (2016). Synthetic biology for space exploration: promises and societal implications. In Ambivalences of Creating Life. Societal and Philosophical dimensions of Synthetic Biology, ed. K. Hagen , M. Engelhard & G. Toepfer , Springer-Verlag, Berlin and Heidelberg.

M. Wainwright , N.C. Wickramasinghe , J.V. Narlikar & P. Rajaratnam (2003). Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol. Lett. 218, 161165.

G.W.W. Wamelink , J.Y. Frissel , W.H.J. Krijnen , M.R. Verwoert & P.W. Goedhart (2014). Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants. PLoS ONE 9, e103138.

B. Wang , J. Wang , W. Zhang & D.R. Meldrum (2012). Application of synthetic biology in cyanobacteria and algae. Front. Microbiol. 3, 344.

G. Wang , G. Li , D. Li , Y. Liu , L. Song , G. Tong , X. Liu & E. Cheng (2004). Real-time studies on microalgae under microgravity. Acta Astronaut. 55, 131137.

G. Wang , H. Chen , G. Li , L. Chen , D. Li , C. Hu , K. Chen & Y. Liu (2006). Population growth and physiological characteristics of microalgae in a miniaturized bioreactor during space flight. Acta Astronaut. 58, 264269.

H.H. Wang , F.J. Isaacs , P.A. Carr , Z.Z. Sun , G. Xu , C.R. Forest & G.M. Church (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894898.

K.A. Warren-Rhodes , K.L. Rhodes , S.B. Pointing , S.A. Ewing , D.C. Lacap , B. Gómez-Silva , R. Amundson , E.I. Friedmann & C.P. McKay (2006). Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389398.

M. Wassmann , R. Moeller , G. Reitz & P. Rettberg (2010). Adaptation of Bacillus subtilis cells to Archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance. Astrobiology 10, 605615.

J. Wierzchos , C. Ascaso & C.P. McKay (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415422.

R.H. Wijffels , O. Kruse & K.J. Hellingwerf (2013). Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24, 405413.

Y. Xiao , Y. Liu , G. Wang , Z. Hao & Y. An (2010). Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta). Toxicon 56, 17.

C. Yang , H. Liu , M. Li , C. Yu & G. Yu (2008). Treating urine by Spirulina platensis. Acta Astronaut. 63, 10491054.

I. Zaets , O. Burlak , I. Rogutskyy , A. Vasilenko , O. Mytrokhyn , D. Lukashov , B. Foing & N. Kozyrovska (2011). Bioaugmentation in growing plants for lunar bases. Adv. Space Res. 47, 10711078.

Y. Zhou , Y. Zhang , X. Wang , J. Cui , X. Xia , K. Shi & J. Yu (2011). Effects of nitrogen form on growth, CO assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants. J. Zhejiang Univ. B 12, 126134.

Y. A. Kudenko , I.V. Gribovskaya & I.G. Zolotukhin (2000). Physical-chemical treatment of wastes: a way to close turnover of elements in LSS. Acta Astronaut. 46, 585589.

S.L. Nixon , C.R. Cousins & C.S. Cockell (2013). Plausible microbial metabolisms on Mars. Astron. Geophys. 54, 1316.

H. Singh , K. Anurag & S.K. Apte (2013). High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. Strain PCC 7120 emanates from genome/proteome repair capabilities. Photosynth. Res. 118, 7181.

H. Badri P. Monsieurs , I. Coninx , R. Wattiez & N. Leys (2015). Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. MicrobiologyOpen 4, 187207.

S.A. Angermayr , M. Paszota & K.J. Hellingwerf (2012). Engineering a cyanobacterial cell factory for production of lactic acid. Appl. Environ. Microbiol., 78, 70987106.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 147
Total number of PDF views: 654 *
Loading metrics...

Abstract views

Total abstract views: 1050 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2017. This data will be updated every 24 hours.