Skip to main content
    • Aa
    • Aa

Thermal decomposition of MgCO3 during the atmospheric entry of micrometeoroids

  • G. Micca Longo (a1) and S. Longo (a1) (a2)

In this paper, a first study of the atmospheric entry of carbonate micrometeoroids, in an astrobiological perspective, is performed. Therefore an entry model, which includes two-dimensional dynamics, non-isothermal atmosphere, ablation and radiation losses, is build and benchmarked to literature data for silicate micrometeoroids. A thermal decomposition model of initially pure magnesium carbonate is proposed, and it includes thermal energy, mass loss and the effect of changing composition as the carbonate grain is gradually converted into oxide. Several scenarios are obtained by changing the initial speed, entry angle and grain diameter, producing a systematic comparison of silicate and carbonate grain. The results of the composite model show that the thermal behaviour of magnesium carbonate is markedly different from that of the corresponding silicate, much lower equilibration temperatures being reached in the first stages of the entry. At the same time, the model shows that the limit of a thermal protection scenario, based on magnesium carbonate, is the very high decomposition speed even at moderate temperatures, which results in the total loss of carbon already at about 100 km altitude. The present results show that, although decomposition and associated cooling are important effects in the entry process of carbonate grains, the specific scenario of pure MgCO3 micrograin does not allow complex organic matter delivery to the lower atmosphere. This suggests us to consider less volatile carbonates for further studies.

Corresponding author
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Blanco , V. Orofino , M. DElia , S. Fonti , A. Mastandrea , A. Guido & F. Russo (2013). Infrared spectroscopy of microbially induced carbonates and past life on mars. Icarus 226(1), 119126.

A. Blanco , V. Orofino , F. Mancarella , S. Fonti , A. Mastandrea , A. Guido , F. Tosti , F. Russo & M. D'Elia (2014). Microbialites vs detrital micrites: degree of biogenicity, parameter suitable for mars analogues. Planetary and Space Science 97, 3442.

L.E. Borg , J.N. Connelly , L.E. Nyquist , C.-Y. Shih , H. Wiesmann & Y. Reese (1999). The age of the carbonates in martian meteorite alh84001. Science 286(5437), 9094.

A. Brack (2002). Do meteoroids of sedimentary origin survive terrestrial atmospheric entry? the ESA artificial meteorite experiment stone. Planetary and Space Science 50(7), 763772.

H. Busemann , A.N. Nguyen , G.D. Cody , P. Hoppe , A.L.D. Kilcoyne , R.M. Stroud , T.J. Zega & L.R. Nittler (2009). Ultra-primitive interplanetary dust particles from the comet 26p/Grigg–Skjellerup dust stream collection. Earth and Planetary Science Letters 288(1), 4457.

S. De LEUW , A.E. Rubin & J.T. Wasson (2010). Carbonates in CM chondrites: complex formational histories and comparison to carbonates in ci chondrites. Meteoritics & Planetary Science 45(4), 513530.

G.J. Flynn , L.P. Keller , M. Feser , S. Wirick & C. Jacobsen (2003). The origin of organic matter in the solar system: evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta 67(24), 47914806.

S. Fonti , A. Jurewicz , A. Blanco , M.I. Blecka & V. Orofino (2001). Presence and detection of carbonates on the martian surface. Journal of Geophysical Research: Planets 106(E11), 2781527822.

F. Foucher , F. Westall , F. Brandstätter , R. Demets , J. Parnell , C.S. Cockell , H.G.M. Edwards , J.-M. Bény & A. Brack (2010). Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth's atmosphere: the Stone 6 experiment. Icarus 207(2), 616630.

S.G. Love & D.E. Brownlee (1991). Heating and thermal transformation of micrometeoroids entering the earth's atmosphere. Icarus 89(1), 2643.

B.V. L'vov (1997). Mechanism of thermal decomposition of alkaline-earth carbonates. Thermochimica Acta 303(2), 161170.

B.V. Lvov (2002). Mechanism and kinetics of thermal decomposition of carbonates. Thermochimica Acta 386(1), 116.

G. Matrajt , S. Messenger , D. Brownlee & D. Joswiak (2012). Diverse forms of primordial organic matter identified in interplanetary dust particles. Meteoritics & Planetary Science 47(4), 525549.

D.S. McKay , E.K. Gibson Jr., K.L. Thomas-Keprta , H. Vali , C.S. Romanek , S.J. Clemett , X.D.F. Chillier , C.R. Maechling & R.N. Zare (1996). Search for past life on mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273(5277), 924.

C.P. McKay , E.I. Friedmann , R.B. Frankel & D.A. Bazylinski (2003). Magnetotactic bacteria on earth and on mars. Astrobiology 3(2), 263270.

T. Noguchi , T. Nakamura & W. Nozaki (2002). Mineralogy of phyllosilicate-rich micrometeorites and comparison with Tagish lake and Sayama meteorites. Earth and Planetary Science Letters 202(2), 229246.

V. Orofino , A. Blanco , M.I. Blecka , S. Fonti & A. Jurewicz (2000). Carbonates and coated particles on mars. Planetary and Space Science 48(12), 13411347.

V. Orofino , A. Blanco , M. DElia , S. Fonti & D. Licchelli (2009). Time-dependent degradation of biotic carbonates and the search for past life on mars. Planetary and Space Science 57(5), 632639.

E. Palomba , A. Zinzi , E.A. Cloutis , M. DAmore , D. Grassi & A. Maturilli (2009). Evidence for mg-rich carbonates on mars from a 3.9 µm absorption feature. Icarus 203(1), 5865.

J. Parnell , S.A. Bowden , D. Muirhead , N. Blamey , F. Westall , R. Demets , S. Verchovsky , F. Brandstätter & A. Brack (2011). Preservation of organic matter in the Stone 6 artificial meteorite experiment. Icarus 212(1), 390402.

T.R. Rao (1996). Kinetics of calcium carbonate decomposition. Chemical Engineering & Technology 19(4), 373377.

M.H. Rees (1989). Physics and Chemistry of the Upper Atmosphere, vol. 1. Cambridge University Press, Cambridge.

A.S. Rivkin , E.L. Volquardsen & B.E. Clark (2006). The surface composition of Ceres: discovery of carbonates and iron-rich clays. Icarus 185(2), 563567.

K.L. Thomas-Keprta , S.J. Clemett , D.S. Mckay , E.K. Gibson & S.J. Wentworth (2009). Origins of magnetite nanocrystals in martian meteorite ALH84001. Geochimica et Cosmochimica Acta 73(21), 66316677.

H. Yabuta (2014). X-ray absorption near edge structure spectroscopic study of hayabusa category 3 carbonaceous particles. Earth, Planets and Space 66(1), 156.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between 12th January 2017 - 23rd March 2017. This data will be updated every 24 hours.