Skip to main content

Limits on methane release and generation via hypervelocity impact of Martian analogue materials

  • M. C. Price (a1), N. K. Ramkissoon (a1), S. McMahon (a2), K. Miljković (a3), J. Parnell (a2), P. J. Wozniakiewicz (a1) (a4), A. T. Kearsley (a4), N. J. F. Blamey (a5), M. J. Cole (a1) and M. J. Burchell (a1)...

The quantity of methane in Mars' atmosphere, and the potential mechanism(s) responsible for its production, are still unknown. In order to test viable, abiotic, methangenic processes, we experimentally investigated two possible impact mechanisms for generating methane. In the first suite of experiments, basaltic rocks were impacted at 5 km s−1 and the quantity of gases (CH4, H2, He, N2, O2, Ar and CO2) released by the impacts was measured. In the second suite of experiments, a mixture of water ice, CO2 ice and anhydrous olivine grains was impacted to see if the shock induced rapid serpentinization of the olivine, and thus production of methane. The results of both suites of experiments demonstrate that impacts (at scales achievable in the laboratory) do not give rise to detectably enhanced quantities of methane release above background levels. Supporting hydrocode modelling was also performed to gain insight into the pressures and temperatures occurring during the impact events.

Hide All
Amsden, A.A., Ruppel, H.M. & Hirt, C.W. (1980). SALE: a simplified ALE computer program for fluid flow at all speeds. Los Alamos National Laboratories Report LA-8095, 105.
Auzende, A.L., Daniel, I., Reynard, B., Lemaire, C. & Guyot, F. (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Min. 31, 269.
Bakanova, A.A., Zubarev, V.N., Sutulov Yu, N. & Trunin, R.F. (1975). Thermodynamic properties of water at high pressures and temperatures. Zh. Eksp. Teor. Fiz. 68(3), 10991107 [in Russian]. Data taken from (accessed 21st June 2013).
Benz, W. & Asphaug, E. (1999). Catastrophic disruptions revisited. Icarus 152, 5.
Berndt, M.E., Allen, D.E. & Seyfried, W.E. (1996). Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 24, 351.
Blamey, N.J.F. (2012). Composition and evolution of crustal, geothermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis. J. Geochem. Explor. 116, 17.
Bridges, J.C. & Warren, P.H. (2006). The SNC meteorites: basaltic igneous processes on Mars. J. Geol. Soc. 163, 229251.
Brown, J.B., Furnish, M. D. & McQueen, R.G. (1987). Thermodynamics for (Mg, Fe)2SiO4 from the Hugoniot. In High-Pressure Research in Mineral Physics, eds Manghnani, M.H. & Syono, Y., pp. 373384. AGU, Washington, DC.
Burchell, M.J., Cole, M.J., McDonnell, J.A.M. & Zarnecki, J.C. (1999). Hypervelocity impact studies using the 2 MV Van de Graff accelerator and two-stage light gas gun at the University of Kent at Canterbury. Meas. Sci. Technol. 10, 41.
Burchell, M.J., Mann, J.R. & Bunch, A.W. (2004). Survival of bacteria and spores under extreme shock pressures. Mon. Not. R. Astron. Soc. 352, 1273.
Byrne, S. et al. (2009). Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674.
Camille Jones, L., Rosenbauer, R., Goldsmith, J.I. & Oze, C. (2010). Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts. Geophys. Res. Lett. 37, L14306.
Chastain, B.K. & Chevrier, V. (2007). Methane clathrate hydrates as a potential source for Martian atmospheric methane. Planet. Space Sci. 55, 12461256.
Christensen, P.R. et al. (2003). Mars: Mars Odyssey THEMIS Results. Science 300, 2056.
Collins, G.S., Melosh, H.J. & Ivanov, B.A. (2004). Damage and deformation in numerical impact simulations. Meteoritics Planet. Sci. 39, 217.
Court, R.W. & Sephton, M.A. (2009). Investigating the contribution of methane produced by ablating micrometeorites to the atmosphere of Mars. Earth Planet. Sci. Lett. 288, 382.
Davison, T.M., Collins, G.S., Elbeshausen, D., Wünnemann, K. & Kearsley, A.T. (2011). Numerical modeling of oblique hypervelocity impacts on strong ductile targets. Meteoritics Planet. Sci. 46, 1510.
Deangelis, M.T., Labotka, T.C., Cole, D.R. & Fayek, M. (2010). Aqueous dissolution and alteration of olivine in low temperature and pressure environments. GSA Denver Annual Meeting, Paper No. 135–12.
Deer, W.A., Howie, R.A. & Zussman, Z. (1992). An Introduction to the Rock Forming Minerals, 2nd edn. Longman Scientific and Technical, England.
Dundas, C.M. & Byrne, S. (2010). Modeling sublimation of ice exposed by new impacts in the Martian mid-latitudes. Icarus 206, 716.
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science 306, 1758.
Geminale, A., Formisano, V. & Giuranna, M. (2008). Methane in Martian atmosphere: average spatial, diurnal and seasonal behavior. Planet. Space Sci. 56, 1194.
Gough, R.V., Tolbert, M.A., McKay, C.P. & Toon, O.B. (2010). Methane adsorption on a Martian soil analog: an abiogenic explanation for methane variability in the Martian atmosphere. Icarus 207, 165174.
Hand, E. (2012). Hopes linger for Mars methane. Nature 491(7423), 174.
Hayhurst, C.J. & Clegg, R.A. (1997). Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. Int. J. Impact Eng. 20(1–5), 337348.
Hirschmann, M.M. & Withers, A.C. (2008). Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse. Earth Planet. Sci. Lett. 270, 147155.
Hyndman, R.D. & Peacock, S.M. (2003). Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417432.
Ivanov, B.A. & Pierazzo, E. (2011). Impact cratering in H20-bearing targets on Mars: thermal field under craters as starting conditions for hydrothermal activity. Meteoritics Planet. Sci. 46, 601.
Ivanov, B.A., Melosh, H.J. & McEwen, A.S. (2010a). New small impact craters in high resolution HiRise images – III. LPSC XLI, abstract #2020.
Ivanov, B.A., Melosh, H.J. & Pierazzo, E. (2010b) Basin-forming impacts: reconnaissance modeling. In Large Meteorite Impacts and Planetary Evolution IV, eds Gibson, R.L. & Reimold, W.U., pp. 2949, Special paper 465. Geological Society of America, Boulder, Colorado.
Keppler, F., Vigano, I., McLeod, A., Ott, U., Früchtl, M. & Röckmann, T. (2012). Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486, 93.
Koeppen, W.C. & Hamilton, V.E. (2008). Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J. Geophys. Res. 113, E05001.
Krasnopolsky, V.A. (2006). Some problems related to the origin of methane on Mars. Icarus 180, 359.
Krasnopolsky, V.A. et al. (2004). Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537.
Kuebler, K.E., Jolliff, B.L., Wang, A. & Haskin, L.A. (2006). Extracting olivine (Fo – Fa) compositions from Raman spectral peak positions. Geochem. Cosmochem. Acta 70, 6201.
Lindgren, P. et al. (2013). Constraining the pressure threshold of impact induced calcite twinning: implications for the deformation history of aqueously altered carbonaceous chondrite parent bodies. Earth Planet. Sci. Lett. (accepted).
Lyons, J.R., Manning, C. & Nimmo, F. (2005). Formation of methane on Mars by fluid-rock interaction in the crust. Geophys. Res. Lett. 32, L131201.
Malin, M.C., Edgett, K.S., Posiolova, L.V., McColley, S.M. & Noe Dobrea, E.Z. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 5805, 15731577.
Marinova, M.M., Aharonson, O. & Asphaug, E. (2011). Geophysical consequences of planetary-scale impacts into a Mars-like planet. Icarus 211, 960.
McKay, D.S. et al. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924.
McMahon, S., Parnell, J., Burchell, M.J. & Blamey, H.J.F. (2012). Methane retention by rocks following simulated impacts: implications for Mars. LPSC XXXXIII, abstract #1040.
McMahon, S., Parnell, J. & Blamey, N.J.F. (2013). Sampling methane in basalt on Earth and Mars. Int. J. Astrobiol. 12(2), 113122.
Melosh, H.J. (1989). Impact cratering: a geological process. Oxford Monogr. Geol. Geophys.
Mouri, T. & Enami, M. (2008). Raman spectroscopic study of olivine-group minerals. Journal of Mineralogical and Petrological Sciences 103, 100104.
Moore, J.N., Norman, D.I. & Mack Kennedy, B. (2001) Fluid inclusion gas compositions from an active magmatic-hydrothermal system. Chem. Geol. 173, 3.
Morris, R.V. et al. (2010). Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329, 421.
Mizutani, H., Takagi, Y., Kawakami, S. (1990). New scaling laws on impact fragmentation. Icarus 87, 307326.
Mumma, M.J. et al. (2009). Strong release of methane on mars in northern summer 2003. Science 323, 1041.
Norman, D.I. & Blamey, N.J.F. (2001). Quantitative analysis of fluid inclusion volatiles by a two quadrupole mass spectrometer system. Eur. Curr. Res. Fluid Inclus., XVI, 341.
Norman, D.I. & Moore, J.N. (1997). Gaseous species in fluid inclusions: a fluid tracer and indicator of fluid processes. Eur. Curr. Res. Fluid Inclus., XIV, 243.
Neubeck, A. et al. (2011). Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70 °C. Geochem. Trans. 12, 6.
Oze, C. & Sharma, M. (2005). Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203.
Oze, C. & Sharma, M. (2007). Serpentinization and the inorganic synthesis of H2 in planetary surfaces. Icarus 187, 557.
Parnell, J., Bowden, S., Lindgren, P., Burchell, M.J., Milner, D., Baldwin, E.C. & Crawford, I.A. (2010). The preservation of fossil biomarkers during hypervelocity impact experiments using organic rich siltstones as both projectiles and targets. Meteoritics Planet. Sci. 45, 1340.
Parry, W.T. & Blamey, N.J.F. (2010). Fault fluid composition from fluid inclusion measurements, Laramide age Uinta thrust fault, Utah. Chem. Geol. 278, 105.
Phillips, R.J. et al. (2011). Massive CO2 ice deposits sequestered in the South polar layered deposits of Mars. Science 332, 6031, 838.
Pierazzo, E., et al. (2008) Validation of numerical codes for impact and explosion cratering: impacts on strengthless and metal targets. Meteoritics Planet. Sci. 43, 1917.
Russell, M.J. et al. (1999). Search for signs of ancient life on Mars: expectations from hydromagnesite microbialites, Salda Lake, Turkey. J. Geol. Soc. (Lond.) 156, 869.
Schwenzer, S.P. (2011). Quantifying low temperature production of methane on Mars. LPSC XXXXII, abstract # 1803.
Schwenzer, S.P. & Kring, D.A. (2009). Impact-generated hydrothermal systems capable of forming phyllosillicates on Noachian Mars. Geology 37(12), 1091.
Senft, L.E. & Stewart, S.T. (2008). Modeling the morphological diversity of impact craters on icy satellites. Meteoritics Planet. Sci. 43, 1993.
Sleep, N., Meibom, A., Fridriksson, Th., Coleman, R.G. & Bird, D.K. (2004). H2 rich fluids from serpentinization: Geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 101, 1281812823.
Steel, D. (1998). Distributions and moments of asteroid and comet impact speeds upon the Earth and Mars. Planet. Space Sci. 46, 473.
Tillotson, J.H. (1962). Metallic Equations of State for Hypervelocity Impact. GA-3216, General Atomic, San Diego.
Trieman, A.H. (2003). Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. Astrobiology 3, 369.
Trieman, A.H., Amundsen, H.E.F., Blake, D.F. & Bunch, T. (2002). Hydrothermal origin for carbonate globules in Martian meteorite ALH84001: a terrestrial analogue from Spitsbergen (Norway). Earth Planet. Sci. Lett. 204, 323.
Webster, C.R. et al. (2013). Measurements of Mars methane at Gale crater by the SAM tuneable laser spectrometer on the Curiosity rover. LPSC XXXXIV, abstract # 1366.
Zahnle, K., Freedman, R.S. & Catling, D.C. (2011). Is there methane on Mars? Icarus 212, 493503.
Zubarev, V.N. & Telegin, G.S. (1962). Shock compressibility of liquid nitrogen and solid carbon dioxide. Dokl. Akad. Nauk SSSR 142(2), 309 [in Russian]. Data taken from (accessed 21st June 2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed