Skip to main content

Oceanic hypervelocity impact events: a viable mechanism for successful panspermia?

  • D.J. Milner (a1), M.J. Burchell (a1), J.A. Creighton (a1) and J. Parnell (a2)

The idea that life migrates naturally between planetary bodies has grown in strength in recent years. This idea (panspermia) is believed to be possible via the mechanism of impact events. Previous research on this topic has concentrated on small meteoroids (micrometres to centimetres in diameter), with giant objects (metres to kilometres in diameter) being relatively ignored. This is due to the common belief that the larger objects vaporize on impact with the Earth's surface, which in most studies is taken as rock. Here we examine experimentally whether hypervelocity impacts into water result in significant survival of the impactors. For this study the University of Kent's two-stage light gas gun was used to accelerate millimetre-sized shale projectiles obliquely into a relatively deep water layer, at approximately 5 km s−1. Two shots have been made with surviving fragments being recovered from each. The surviving fragments appear highly shocked and display clear signs of cracking. The fragments that have been isolated contribute to a significant percentage (~10%) of the original unfired projectile mass and are as large as ~20% of the original projectile diameter. This indicates that oceanic hypervelocity impact events of large asteroids may deliver significant volumes of solid material to the Earth and thus provide a possible mechanism for successful panspermia.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 50 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.