Skip to main content

Robotic astrobiology – prospects for enhancing scientific productivity of mars rover missions

  • A. A. Ellery (a1)

Robotic astrobiology involves the remote projection of intelligent capabilities to planetary missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii) continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return for astrobiology missions, but together, they will provide full autonomous science capability.

Corresponding author
Hide All
Albrecht D., Schwantes J., Kukkadapu R., McDonald B., Eiden G. & Sweet L. (2015). Real-time noise reduction for Mossbauer spectroscopy through online implementation of a modified Kalman filter. Nucl. Instrum. Methods Phys. Res. A773, 6671.
Bornstein B., Castano R., Gilmore M., Merrill M. & Greenwood J. (2005). Creation and testing of an artificial neural network based carbonate detector for Mars rovers. In IEEE Aerospace Conf., Big Sky MT, USA. paper no. 1559330.
Casasent D., Smokelin J-S. & Ye A. (1992). Wavelet and Gabor transforms for detection. Opt. Eng. 31(9), 18931898.
Castano R., Mann T. & Mjolsness E. (1999). Texture analysis for Mars rover images. In Proc. SPIE Conf. on Applications of Digital Image Processing XXII 3808, pp. 162179. Denver, CO.
Castano R., Estlin T., Gaines D., Castano A., Chouinard C., Bornstein B., Anderson R., Chien S., Fukunaga A. & Judd M. (2006). Opportunistic rover science: finding and reacting to rocks, clouds and dust devils. In Proc. IEEE Aerospace Conf., paper no. 1656011.
Castano R., Estlin T., Anderson R., Gaines D., Castano A., Bormstein B., Chouinard C. & Judd M. (2007a). OASIS: onboard autonomous science investigation system for opportunistic rover science. J. Field Robot. 24(5), 379397.
Castano R., Estlin T., Gaines D., Chouinard C. & Bornstein B. (2007b). Onboard autonomous rover science. In Proc. IEEE Aerospace Conf., Big Sky MT, USA, paper no. 1475.
Chaumette F. & Hutchinson S. (2006). Visual servo control part I: basic approaches. IEEE Robot. Autom. Mag. (Dec), 13, 8290.
Chaumette F. & Hutchinson S. (2007). Visual servo control part II: advanced approaches. IEEE Robot. Autom. Mag. (Mar), 14, 109118.
Chien S., Bue B., Castillo-Rogez J., Gharibian D., Knight R., Schauffer S., Thompson D. & Wagstaff K. (2014). Agile science: using onboard autonomy for primitive bodies and deep space exploration. In Proc. Int. Symp. on Artificial Intelligence Robotics & Automation in Space, Montreal, Canada, paper 11.
Chin T. & Mariano A. (1994). Wavelet-based compression of covariances in Kalman filtering of geophysical flows. In Proc. SPIE 2242 Wavelet Applications, Orlando FL, USA, pp. 842850.
Cooper G. & Herskovits E. (1992). Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309347.
Cousins C., Gunn M., Prosser B., Barnes D., Crawford I., Griffiths A., Davis L. & Coates A. (2012). Selecting the geology filter wavelengths for the ExoMars Panoramic Camera instrument. Planet. Space Sci. 71, 80100.
Cross G. & Jain A. (1983). Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5(1), 2539.
Cross M., Nicol C., Qadi A. & Ellery A. (2013). Application of COTS components for Martian exploration. J. Br. Interplanet. Soc. 66(5/6), 161166.
Denzler J. & Brown C. (2002). Information theoretic sensor data selection for active object recognition and state estimation. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 145157.
Doya K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10, 732739.
Eddy S. (2004). What is Bayesian statistics? Nat. Biotechnol. 22, 11771178.
Ellery A. (2010). Selective snapshot of state-of-the-art artificial intelligence and robotics with reference to the Icarus starship. J. Br. Interplanet. Soc. 62, 427439.
Ellery A. (2015). Artificial intelligence through symbolic connectionism – a biomimetic rapprochement. In Biomimetic Technologies: Principles & Applications, ed. Ngo D. Elsevier Publishing Cambridge, UK, pp.227252.
Ellery A. (2016). Planetary Rovers: Robotic Exploration of the Solar System. Praxis-Springer Publishers, UK.
Ellery A. & Wynn-Williams D. (2003). Why Raman spectroscopy on Mars? A case of the right tool for the right job. Astrobiology 3(3), 565579.
Ellery A., Ball A., Cockell C., Dickensheets D., Edwards H., Kolb C., Lammer H., Patel M. & Richter L. (2004a). Vanguard – a European robotic astrobiology-focussed Mars sub-surface mission proposal. Acta Astron. 56(3), 397407.
Ellery A., Wynn-Williams D., Parnell J., Edwards H. & Dickensheets D. (2004b). The role of Raman spectroscopy as an astrobiological tool. J Raman Spectrosc. 35, 441457.
Ellery A., Richter L., Parnell J. & Baker A. (2006). Low cost approach to the exploration of Mars through a robotic technology demonstrator mission. Acta Astron. 59(8–11), 742749.
Fairen A. & Schulze-Makuch D. (2013). Overprotection of mars. Nat. Geosci. 6, 510511.
Fox J., Castano R. & Anderson R. (2002). Onboard autonomous rock shape analysis for Mars rovers. Proc. IEEE Aerosp. Conf. 5, 20372052.
Gallant M., Ellery A. & Marshall J. (2013). Rover-based autonomous science by probabilistic identification and evaluation. J. Intell. Robot. Syst. 72(3), 591613.
Gao Y., Ellery A., Vincent J., Eckersley S. & Jaddou M. (2007). Planetary micro-penetrator concept study with biomimetic drill and sampler design. IEEE Trans. Aerosp. Electron. Syst. 43(3), 875885.
Gao Y., Frame T. & Pitcher C. (2015). Piercing the extraterrestrial surface: integrated robotic drill for planetary exoloration. IEEE Robot. Autom. Mag. (Mar), 22, 4553.
Glavin P. et al. (2014). Organic molecules in the sheepbed mudstone, Gale crater, Mars. In 8th Int. Conf. on Mars Abstract, 1349.
Glymour C. (2003). Learning, prediction and causal Bayes nets. Trends Cogn. Sci. 7(1), 4348.
Griffiths A. & The Camera Team (2006). Context for the ExoMars rover: the panoramic camera (pancam) instrument. Int. J. Astrobiol. 5(3), 269275.
Grotzinger J. & The MSL Science Team (2014). Habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777.
Gulick V., Morris R., Ruzon M. & Roush T. (2001). Autonomous image analyses during the 1999 Marsokhod rover field test. J. Geophys. Res. 106(E4), 77457763.
Hay A., Samson C. & Ellery A. (2017). Robotic magnetic mapping with the Kapvik planetary micro-rover. submitted to Int. J. Astrobiol. (this issue).
Hecht M., Kouvanes S., Quinn R., West S., Young S., Ming D. & Catling D. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix landing site. Science 325, 6467.
Heckerman D., Geiger D. & Chickering D. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197243.
Henderson J. (2003). Human gaze control during real world scene perception. Trends Cogn. Sci. 7(11), 498504.
Hewitt R., Ellery A. & de Ruiter A. (2017). LIDAR classification using neural networks for planetary rover missions. Int. J. Adv. Robot. Syst. (in press).
Hurowitz J., McLennan S., Tosca N., Arvidson R., Michalski J., Ming D., Schroder C. & Squyres S. (2006). In situ evidence for acidic weathering of rocks and soils on Mars. J Geophys. Res. 111, E02S19.
Hutchinson S., Hager G. & Corke P. (1996). Tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(1), 651670.
Itti L., Koch C. & Niebur E. (1996). Model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 12541259.
Jacquin A. (1993). Fractal image coding: a review. Proc. IEEE 81(10), 14511465.
Jain A. & Farrokinia F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24(12), 11671186.
Jerby E., Dikhtayer V., Aktushev O. & Grosglick U. (2002). Microwave drill. Science 298, 587589.
Jones J. & Palmer L. (1987). Evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 12331258.
Khatan A. & Bhuiyan A-A. (2011). Neural network-based face recognition with Gabor filters. Int. J. Comput. Sci. Netw. Sec. 11(1), 7176.
Kolb C., Lammer H., Ellery A., Edwards H., Cockell C. & Patel M. (2002). The Martian oxygen surface sink and its implications for the oxidant extinction depth. In Proc. 2nd European Workshop on Exo/Astrobiology ESA SP-518 (September 2002), Graz, Austria.
Kolb C., Abart R., Wappis E., Penz T., Lammer H. & Jessberger E. (2004). Meteoritic input on Mars – influence on organic geochemistry. In Proc. 3rd European Workshop on Exo-Astrobiology: Mars – the Search for Life (ESA SP-545), Madrid, Spain, pp. 225226.
Kostevelis I., Boukas E., Nalpanttidis L. & Gasteratos A. (2011). SPARTAN system: towards a low-cost and high-performance vision architecture for space exploratory rovers. In IEEE Int. Conf. on Computer Vision Workshops, Barcelona, Spain, 19942001.
Kwolek B. (2015). Face detection using convolutional neural networks and Gabor filters. In Proc. 15th Int. Conf. on Artificial Neural Networks: Biological Inspirations 1, Warsaw, Poland, pp. 551556.
Lee T. (1996). Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959971.
Liu G., Liu Y., Zhang H., Gao X., Yuan J. & Zheng W. (2015a). Kapvik robotic mast. IEEE Robot. Autom. Mag. (Mar), 22, 3444.
Liu G., Lui Y., Zhang H., Gao X., Yuan J. & Zheng W. (2015b). Kapvik robotic mast: an innovative robotic arm for planetary exploration rovers. IEEE Robot. Autom. Mag. 22(1), 3444.
Magnani P., Re E., Senese S., Cherubini G. & Olivieri A. (2003). Different drill tool concepts. In Proc. 5th Int. Conf. on Low-Cost Planetary Missions, pp. 407411. ESTEC, Noordwijk, Netherlands (ESA SP-542).
Mallat S. (1989). Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674693.
Materka A. & Strzelcki M. (1998). Texture analysis methods – a review. University of Lodz COST B11 Report, Institute of Electronics, Brussels.
Maugham H., Birky W., Nicholson W., Rosenszeig W. & Vreeland R. (2002). Paradox of the ancient bacterium which contains modern protein-coding genes. Mol. Biol. Evol. 19(9), 16371639.
McGuire P., Ormo J., Martinez E., Rodriguez J., Elvira J., Ritter H., Oesker M. & Ontrup J. (2004). Cyborg astrobiologist: first field experience. Int. J. Astrobiol. 3, 189207.
Menon C., Ayre M. & Ellery A. (2006). Biomimetics – a new approach to space systems design. ESA Bull. 125(Feb), 2126.
MEPAD Next Decade Science Analysis Group (2008). Science priorities for Mars sample return. Astrobiology 8(3), 489535.
Muller H. & Krummenacher J. (2006). Visual search and selective attention. Vis. Cognit. 14, 389410.
Navarro-Gonzalez R., Vargas E., de la Rosa J., Raga A. & McKay C. (2010). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115(E1), 2010JE003599.
Nehmzow U. & Neto H. (2004). Novelty-based visual inspection using mobile robots. In Towards Autonomous Robotics Systems: Proc. 5th British Conf. on Mobile Robotics. Colchester, UK.
Neto H. & Nehmzow U. (2005). Incremental PCA: an alternative approach for novelty detection. In Proc. Towards Autonomous Robotic Systems, pp. 227233.
Nickle D., Learn G., Rain M., Mullins J. & Mittler J. (2002). Curiously modern DNA for a 250 million year old bacterium. J. Mol. Evol. 54, 134137.
Parnell J., Boyce A. & Blamey N. (2010). Follow the methane: the search for a deep biosphere and the case for sampling serpentinites on Mars. Int. J. Astrobiol. 9(4), 193200.
Penny W. & Roberts S. (1999). Bayesian neural networks for classification: how useful is the evidence framework? Neural Netw. 12, 877892.
Perron T., Mitrovica J., Manga M., Matsuyama I. & Richards M. (2007). Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447, 840843.
Qadi A., Cloutis E., Samson C., Whyte L., Ellery A., Bell J. III, Berard G., Boivin A. Haddad E., Lavoie J. et al. (2015). Mars methane analogue mission: mission simulation and rover operations at Jeffrey mine deployment. Adv. Space Res. 55(10), 24142426.
Randen T. & Husay J. (1999). Filtering for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291310.
Rioul O. & Vetterli M. (1991). Wavelets and signal processing. IEEE Signal Process. Mag. (Oct), 8, 1438.
Ross J. & Ellery A. (2017). Panoramic camera tracking on planetary rovers using feedforward control. Int. J. Adv. Robot. Syst. (in press).
Sahoolizadeh H., Sarikhanimoghadam D. & Dehghani H. (2008). Face detection using Gabor wavelets and neural networks. Int. J Electr. Comput. Energ. Electron. Commun. Eng. 2(9), 18621864.
Schmidhuber J. (2015). Deep learning in neural networks: an overview. Neural Netw. 61, 85117.
Schultze-Makuch D., Dohm J., Fan C., Fairen A., Rodriiguez J., Baker V. & Fink W. (2007). Exploration of hydrothermal targets on Mars. Icarus 189, 308324.
Schwartz D., Mancinelli R. & Kaneshiro E. (1992). Use of mineral crystals as biomarkers in the search for life on Mars. Adv. Space Res. 12(4), 41174119.
Sejnowski T. & Rosenberg C. (1987). Parallel networks that learn to pronounce English text. Complex Syst. 1, 145168.
Sengar A. (2009). Colour texture classification using wavelet transform and neural network ensembles. Arab. J. Sci. Eng. 34(2B), 483498.
Setterfield T. & Ellery A. (2013). Terrain response estimation using an instrumented rocker-bogie mobility system. IEEE Trans. Robot. 29(1), 172188.
Setterfield T., Ellery A. & Frazier C. (2014). Mechanical design and testing of an instrumented rocker-bogie mobility system for the Kapvik micro-rover. J. Br. Interplanet. Soc. 67, 96104.
Sharif H., Samson C. & Ellery A. (2015) Autonomous rock classification using Bayesian image analysis for rover-based planetary exploration. Comput. Geosci. 83, 153167.
Smith T., Thompson D., Wettergreen D., Cabrol N., Warren-Rhodes A. & Weinstein S. (2007 ). Life in the Atacama: science autonomy for improving data quality. J. Geophys. Res. 112, G04S03.
Sprague N. & Ballard D. (2003). Eye movements for reward maximization. In Proc. 16th Int. Conf. on Neural Information Processing Systems, Istanbul, Turkey, pp. 14671474.
Srinivasan M., Chahl J., Weber K., Ventakesh S., Nagle M. & Zhang S. (1999). Robot navigation inspired by principles of insect vision. Robot. Autonom. Syst. 26, 203216.
Starc J. & Querre P. (2001). Multispectral data restoration by the wavelet Karhunen-Loeve transform. Signal Process. 81, 2449–2439.
Stoker C. & Bullock M. (1997). Organic degradation under simulated Martian conditions. J. Geophys. Res. – Planets 102(E5), 1088110888.
Taylor B. & Darrah M. (2005). Rule extraction as a formal method for the verification and validation of neural networks. In Proc. Int. Joint Conf. on Neural Networks, vol. 5, pp. 29152920.
Thompson D. & Castano R. (2007). Performance comparison of rock detection algorithms for autonomous planetary geology. In Proc. IEEE Aerospace Conf, Big Sky MT, USA, paper no. 352699.
Thompson D., Niekum S., Smith T. & Wettergreen D. (2005). Automatic detection and classification of features of geologic interest. In Proc. IEEE Aerospace Conf., Big Sky MT, USA, paper no. 1559329.
Thompson D., Smith T. & Wettergreen D. (2008). Information-optimal selective data return for autonomous rover traverse science and survey. In Proc. IEEE Int Conf Robotics & Automation, Pasadena CA, USA, pp. 968973.
Thompson D., Abbey W., Allwood A., Bekker D., Bornstein B., Cabrol N., Castalio R., Estlin T., Fuchs T. & Wagstaff K. (2012). Smart cameras for remote science survey. In Proc. Int. Symp. on Artificial Intelligence Robotics & Automation in Space, Turin, Italy.
Torralba A., Oliva A., Castelhano M. & Henderson J. (2006). Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol. Rev. 113, 766786.
Usevitch B. (2001). Tutorial on modern lossy wavelet image compression: foundations of JPEG 2000. IEEE Signal Process. Mag. (Sep), 18, 2235.
Vedaldi A. & Fulkerson B. (2010). VLFeat – an open and portable library of computer vision algorithms. In Proc. 18th ACM Int. Conf. Multimedia, Firenze, Italy, pp. 14691472.
Verschae R. & Ruiz-del-Solar J. (2015). Object detection: current and future directions. In Frontiers in Robotics & AI 2 (Novemebr), article 29.
Vetterli M. & Herley C. (1992). Wavelets and filter banks: theory and design. IEEE Trans. Signal Process. 40 (9), 22072232.
Vreeland R., Rosenzweig W. & Powers D. (2000). Isolation of a 250 million year old halotolerant bacterium from a primary salt crystal. Nature 407, 987–900.
Wagner M., Apostolopoulos D., Shillcutt K., Shamah B., Simmons R. & Whittaker W. (2001). Science autonomy system of the Nomad robot. In Proc. IEEE Int. Conf. on Robotics & Automation, Seoul, Korea, pp. 17421749.
Willersley E. & Hebsgaard M. (2005). New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crustal: comment and reply. Geology 33(1), e93.
Woods M., Shaw A., Barnes D., Price D., Long D. & Pullan D. (2009). Autonomous science for an ExoMars rover-like mission. J Field Robot. 26(4), 358390.
Zent A. (1998). On the thickness of the oxidised layer of the Martian regolith. J. Geophys. Res. 103(E13), 3149131498.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 155 *
Loading metrics...

* Views captured on Cambridge Core between 31st July 2017 - 19th November 2017. This data will be updated every 24 hours.