Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T23:11:17.025Z Has data issue: false hasContentIssue false

Synthesis of goethite in solutions of artificial seawater and amino acids: a prebiotic chemistry study

Published online by Cambridge University Press:  07 February 2013

Cristine E. A. Carneiro
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil e-mail: damzaia@uel.br
Flávio F. Ivashita
Affiliation:
Departamento de Física-CCE, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
Ivan Granemann de Souza Junior
Affiliation:
Departamento de Agronomia-CCA, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
Cláudio M. D. de Souza
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil e-mail: damzaia@uel.br
Andrea Paesano Jr
Affiliation:
Departamento de Física-CCE, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
Antonio C. S. da Costa
Affiliation:
Departamento de Agronomia-CCA, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
Eduardo di Mauro
Affiliation:
Laboratório de Fluorescência e Ressonância Paramagnética Eletrônica (LAFLURPE)-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
Henrique de Santana
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil e-mail: damzaia@uel.br
Cássia T. B. V. Zaia
Affiliation:
Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
Dimas A. M. Zaia*
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil e-mail: damzaia@uel.br
*

Abstract

This study investigated the synthesis of goethite under conditions resembling those of the prebiotic Earth. The artificial seawater used contains all the major elements as well as amino acids (α-Ala, β-Ala, Gly, Cys, AIB) that could be found on the prebiotic Earth. The spectroscopic methods (FT-IR, EPR, Raman), scanning electron microscopy (SEM) and X-ray diffraction showed that in any condition Gly and Cys favoured the formation of goethite, artificial seawater plus β-Ala and distilled water plus AIB favoured the formation of hematite and for the other synthesis a mixture of goethite and hematite were obtained. Thus in general no protein amino acids (β-Ala, AIB) favoured the formation of hematite. As shown by surface enhanced Raman spectroscopy (SERS) spectra the interaction between Cys and Fe3+ of goethite is very complex, involving decomposition of Cys producing sulphur, as well as interaction of carboxylic group with Fe3+. SERS spectra also showed that amino/CN and C-CH3 groups of α-Ala are interacting with Fe3+ of goethite. For the other samples the shifting of several bands was observed. However, it was not possible to say which amino acid groups are interacting with Fe3+. The pH at point of zero charge of goethites increased with artificial seawater and decreased with amino acids. SEM images showed when only goethite was synthesized the images of the samples were acicular and when only hematite was synthesized the images of the samples were spherical. SEM images for the synthesis of goethite with Cys were spherical crystal aggregates with radiating acicular crystals. The highest resonance line intensities were obtained for the samples where only hematite was obtained. Electron paramagnetic resonance (EPR) and Mössbauer spectra showed for the synthesis of goethite with artificial seawater an isomorphic substitution of iron by seawater cations. Mössbauer spectra also showed that for the synthesis goethite in distilled water plus Gly only goethite was synthesized and in artificial seawater plus Cys a doublet due to interaction of iron with artificial seawater/Cys was observed. It should be pointed out that EPR spectroscopy did not show the interaction of iron with artificial seawater/Cys.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrero, C.A., Betancur, J.D., Greneche, J.M., Goya, G.F. & Berquó, T.S. (2006). Geophys. J. Int. 164, 331339.Google Scholar
Berquó, T.S., Imbernon, R.A.L., Blot, A., Franco, D.R., Toledo, M.C.M. & Partiti, C.S.M. (2007). Phys. Chem. Miner. 34, 287294.Google Scholar
Biondi, E., Branciamore, S., Maurel, M.C. & Gallori, E. (2007). BMC Evol. Biol. 7(Suppl 2), s2. doi:10.1186/1471-2148-7-S2-S2CrossRefGoogle Scholar
Bishop, J.L. & Murad, E. (2002). Geol. Soc. Lond. Spec. Publ. 202, 350370.Google Scholar
Braterman, P.S., Cairns-Smith, A.G. & Sloper, R.W. (1983). Nature 303, 163164.Google Scholar
Carbone, C., Di Benedetto, F., Marescotti, P., Sangregorio, C., Sorace, L., Lima, N., Romanelli, M., Lucchetti, G. & Cipriani, C. (2005). Mineral. Petrol. 85, 1932.Google Scholar
Catling, D.C. & Moore, J.M. (2003). Icarus 165, 277300.CrossRefGoogle Scholar
Cleaves, H.J. II, Scott, A.M., Hill, F.C., Leszczynski, J., Sahaide, N. & Hazen, R. (2012). Chem. Soc. Rev. 41, 55025525.Google Scholar
Cohn, C.A., Hansson, T.K., Larsson, H.S., Soweby, S.J. & Holm, N.G. (2001). Astrobiology 1, 477480.Google Scholar
Cornell, R.M. & Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Federal Republic of Germany.Google Scholar
Cornell, R.M., Giovanoli, R. & Scheneider, W. (1990). Clays Clay Miner. 38, 2128.CrossRefGoogle Scholar
Cudennec, Y. & Lecerf, A. (2006). J. Solid State Chem. 179, 716722.Google Scholar
Durmus, Z., Kavas, H., Toprak, M.S., Baykal, A., Altınçekiç, T.G., Aslan, A., Bozkurt, A. & Coşgun, S. (2009). J. Alloys Compd. 484, 371376.Google Scholar
Durmus, Z., Kavas, H., Baykala, A., Sozeri, H., Alpsoy, L., Çelik, M.S. & Toprak, S.Ü.C. (2011). J. Alloys Compd. 509, 25552561.Google Scholar
Faivre, D. & Zuddas, P. (2006). Earth Planet. Sci. Lett. 243, 5360.CrossRefGoogle Scholar
Fleming, G.D., Finnerty, J.J., Vallette, M.C., Celis, F., Aliaga, A.E., Fredes, C.F. & Koch, R. (2009). J. Raman Spectrosc. 40, 632638.Google Scholar
Flynn, C.M. Jr. (1984). Chem. Rev. 84, 3141.CrossRefGoogle Scholar
Guskos, N. et al. (2002). Mater. Res. Bull. 37, 10511061.CrossRefGoogle Scholar
Holm, N.G. & Andersson, E. (2005). Astrobiology 5, 444460.Google Scholar
Holm, N.G., Dowler, M.J., Wadsten, T. & Arrhenius, G. (1983). Geochim. Cosmochim. Acta 47, 14651470.CrossRefGoogle Scholar
Holm, N.G., Ertem, G. & Ferris, J.P. (1993). Orig. Life Evol. Biosph. 23, 195215.Google Scholar
Holm, N.G., Dumont, M., Ivarsson, M. & Konn, C. (2006). Geochem. Trans. 7, 7.Google Scholar
Kandori, K., Sakai, M., Inoue, S. & Ishikawa, T. (2006). J. Colloid Interface Sci. 293, 108115.Google Scholar
Kapitán, J., Baumruk, V., Kopecky, V. & Bour, P. (2006). J. Phys. Chem. A 110, 46894696.CrossRefGoogle Scholar
Kosmulski, M., Maczka, E., Jartych, E. & Rosenholmbet, J.B. (2003). Adv. Colloid Interface Sci. 103, 5776.CrossRefGoogle Scholar
Lu, B., Li, P., Liu, H., Zhao, L.Y. & Wei, Y. (2011). J. Phys. Chem. Solids 72, 10321036.CrossRefGoogle Scholar
Mantion, A., Gozzo, F., Schmitt, B., Stern, W.B., Gerber, Y., Robin, A.Y., Fromm, K.M., Painsi, M. & Taubert, A. (2008). J. Phys. Chem. C 112, 1210412110.Google Scholar
Martin, W., Baross, J., Kelley, D. & Russell, M.J. (2008). Nat. Rev. Microbiol. 6, 805814.Google Scholar
Mohapatra, M., Rout, K. & Anand, S. (2009). J. Hazard. Mater. 171, 417423.Google Scholar
Moorbath, S. (1977). Sci. Am. 236, 92104.Google Scholar
Norén, K., Loring, J.S. & Persson, P. (2008). J. Colloid Interface Sci. 319, 416428.CrossRefGoogle Scholar
Rietmeijer, F.J.M. (1996). Meteorit. Planet. Sci. 31, 237242.Google Scholar
Shanker, U., Bhushan, B., Bhattacharjee, G. & Kamaluddin, (2012). Orig. Life Evol. Biosph. 42, 3145.CrossRefGoogle Scholar
Smith, R.M., Motekaitis, R.J. & Martell, A.E. (1985). Inorg. Chim. Acta 103, 7382.Google Scholar
Uehara, G. (1979) Mineral–Chemical Properties of Oxisols. International Soil Classification Workshop, vol 2, Soil Survey Division— Land Development Department, Bangkok, Thailand, p. 45–6.Google Scholar
Varanda, L.C., Morales, M.P., Jafelicci, M. & Serna, C.J. (2002). J. Mater. Chem. 12, 36493653.CrossRefGoogle Scholar
Vieira, A.P., Berndt, G., de Souza Junior, I.G., di Mauro, E., Paesano Junior, A., de Santana, H., da Costa, A.C.S., Zaia, C.T.B.V. & Zaia, D.A.M. (2011). Amino Acids 40, 205214.CrossRefGoogle Scholar
Villalobos, M., Cheney, M.A. & Cienfuegos, J.A. (2009). J. Colloid Interface Sci. 336, 412422.Google Scholar
Wade, M.L., Agresti, D.G., Wdowiak, T.J. & Armendarez, L.P. (1999). J. Geophys. Res. 104, 84898507.Google Scholar
Wang, G.H., Li, W.C., Jia, K.M., Spliethoff, B., Schüth, F. & Lu, A.H. (2009). Appl. Catal. A 364, 4247.CrossRefGoogle Scholar
Wang, G.H., Li, W.C., Jia, K.M. & Lu, A.H. (2011). Nano Brief Rep. Rev. 6, 469479.Google Scholar
Webb, J., Macey, D.J., Chua-anusorn, W.T.G., Pierre, S.T., Brooker, L.R., Rahman, I. & Noller, B. (1999). Coord. Chem. Rev. 190192, 1199–1215.Google Scholar
Xiaojuan, Y., Huaimin, G. & Jiwei, W. (2010). J. Mol. Struct. 977, 5661.Google Scholar
Zaia, D.A.M. (2012). Int. J. Astrobiol. 11, 229234.Google Scholar
Zaia, D.A.M., Zaia, C.T.B.V. & de Santana, H. (2008). Orig. Life Evol. Biosph. 38, 469488.CrossRefGoogle Scholar
Zhu, G., Zhu, X., Fan, Q. & Wan, X. (2011). Spectrochim. Acta A 78, 11871195.CrossRefGoogle Scholar
Zysler, R.D., Fiorani, D., Testa, A.M., Suber, L., Agostinelli, E. & Godinho, M. (2003). Phys. Rev. B 68(1–4), 212408.Google Scholar