Skip to main content

Synthesis of goethite in solutions of artificial seawater and amino acids: a prebiotic chemistry study

  • Cristine E. A. Carneiro (a1), Flávio F. Ivashita (a2), Ivan Granemann de Souza (a3), Cláudio M. D. de Souza (a1), Andrea Paesano (a2), Antonio C. S. da Costa (a3), Eduardo di Mauro (a4), Henrique de Santana (a1), Cássia T. B. V. Zaia (a5) and Dimas A. M. Zaia (a1)...

This study investigated the synthesis of goethite under conditions resembling those of the prebiotic Earth. The artificial seawater used contains all the major elements as well as amino acids (α-Ala, β-Ala, Gly, Cys, AIB) that could be found on the prebiotic Earth. The spectroscopic methods (FT-IR, EPR, Raman), scanning electron microscopy (SEM) and X-ray diffraction showed that in any condition Gly and Cys favoured the formation of goethite, artificial seawater plus β-Ala and distilled water plus AIB favoured the formation of hematite and for the other synthesis a mixture of goethite and hematite were obtained. Thus in general no protein amino acids (β-Ala, AIB) favoured the formation of hematite. As shown by surface enhanced Raman spectroscopy (SERS) spectra the interaction between Cys and Fe3+ of goethite is very complex, involving decomposition of Cys producing sulphur, as well as interaction of carboxylic group with Fe3+. SERS spectra also showed that amino/CN and C-CH3 groups of α-Ala are interacting with Fe3+ of goethite. For the other samples the shifting of several bands was observed. However, it was not possible to say which amino acid groups are interacting with Fe3+. The pH at point of zero charge of goethites increased with artificial seawater and decreased with amino acids. SEM images showed when only goethite was synthesized the images of the samples were acicular and when only hematite was synthesized the images of the samples were spherical. SEM images for the synthesis of goethite with Cys were spherical crystal aggregates with radiating acicular crystals. The highest resonance line intensities were obtained for the samples where only hematite was obtained. Electron paramagnetic resonance (EPR) and Mössbauer spectra showed for the synthesis of goethite with artificial seawater an isomorphic substitution of iron by seawater cations. Mössbauer spectra also showed that for the synthesis goethite in distilled water plus Gly only goethite was synthesized and in artificial seawater plus Cys a doublet due to interaction of iron with artificial seawater/Cys was observed. It should be pointed out that EPR spectroscopy did not show the interaction of iron with artificial seawater/Cys.

Corresponding author
Hide All
Barrero C.A., Betancur J.D., Greneche J.M., Goya G.F. & Berquó T.S. (2006). Geophys. J. Int. 164, 331339.
Berquó T.S., Imbernon R.A.L., Blot A., Franco D.R., Toledo M.C.M. & Partiti C.S.M. (2007). Phys. Chem. Miner. 34, 287294.
Biondi E., Branciamore S., Maurel M.C. & Gallori E. (2007). BMC Evol. Biol. 7(Suppl 2), s2. doi:10.1186/1471-2148-7-S2-S2
Bishop J.L. & Murad E. (2002). Geol. Soc. Lond. Spec. Publ. 202, 350370.
Braterman P.S., Cairns-Smith A.G. & Sloper R.W. (1983). Nature 303, 163164.
Carbone C., Di Benedetto F., Marescotti P., Sangregorio C., Sorace L., Lima N., Romanelli M., Lucchetti G. & Cipriani C. (2005). Mineral. Petrol. 85, 1932.
Catling D.C. & Moore J.M. (2003). Icarus 165, 277300.
Cleaves H.J. II, Scott A.M., Hill F.C., Leszczynski J., Sahaide N. & Hazen R. (2012). Chem. Soc. Rev. 41, 55025525.
Cohn C.A., Hansson T.K., Larsson H.S., Soweby S.J. & Holm N.G. (2001). Astrobiology 1, 477480.
Cornell R.M. & Schwertmann U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Federal Republic of Germany.
Cornell R.M., Giovanoli R. & Scheneider W. (1990). Clays Clay Miner. 38, 2128.
Cudennec Y. & Lecerf A. (2006). J. Solid State Chem. 179, 716722.
Durmus Z., Kavas H., Toprak M.S., Baykal A., Altınçekiç T.G., Aslan A., Bozkurt A. & Coşgun S. (2009). J. Alloys Compd. 484, 371376.
Durmus Z., Kavas H., Baykala A., Sozeri H., Alpsoy L., Çelik M.S. & Toprak S.Ü.C. (2011). J. Alloys Compd. 509, 25552561.
Faivre D. & Zuddas P. (2006). Earth Planet. Sci. Lett. 243, 5360.
Fleming G.D., Finnerty J.J., Vallette M.C., Celis F., Aliaga A.E., Fredes C.F. & Koch R. (2009). J. Raman Spectrosc. 40, 632638.
Flynn C.M. Jr. (1984). Chem. Rev. 84, 3141.
Guskos N. et al. (2002). Mater. Res. Bull. 37, 10511061.
Holm N.G. & Andersson E. (2005). Astrobiology 5, 444460.
Holm N.G., Dowler M.J., Wadsten T. & Arrhenius G. (1983). Geochim. Cosmochim. Acta 47, 14651470.
Holm N.G., Ertem G. & Ferris J.P. (1993). Orig. Life Evol. Biosph. 23, 195215.
Holm N.G., Dumont M., Ivarsson M. & Konn C. (2006). Geochem. Trans. 7, 7.
Kandori K., Sakai M., Inoue S. & Ishikawa T. (2006). J. Colloid Interface Sci. 293, 108115.
Kapitán J., Baumruk V., Kopecky V. & Bour P. (2006). J. Phys. Chem. A 110, 46894696.
Kosmulski M., Maczka E., Jartych E. & Rosenholmbet J.B. (2003). Adv. Colloid Interface Sci. 103, 5776.
Lu B., Li P., Liu H., Zhao L.Y. & Wei Y. (2011). J. Phys. Chem. Solids 72, 10321036.
Mantion A., Gozzo F., Schmitt B., Stern W.B., Gerber Y., Robin A.Y., Fromm K.M., Painsi M. & Taubert A. (2008). J. Phys. Chem. C 112, 1210412110.
Martin W., Baross J., Kelley D. & Russell M.J. (2008). Nat. Rev. Microbiol. 6, 805814.
Mohapatra M., Rout K. & Anand S. (2009). J. Hazard. Mater. 171, 417423.
Moorbath S. (1977). Sci. Am. 236, 92104.
Norén K., Loring J.S. & Persson P. (2008). J. Colloid Interface Sci. 319, 416428.
Rietmeijer F.J.M. (1996). Meteorit. Planet. Sci. 31, 237242.
Shanker U., Bhushan B., Bhattacharjee G. & Kamaluddin (2012). Orig. Life Evol. Biosph. 42, 3145.
Smith R.M., Motekaitis R.J. & Martell A.E. (1985). Inorg. Chim. Acta 103, 7382.
Uehara G. (1979) Mineral–Chemical Properties of Oxisols. International Soil Classification Workshop, vol 2, Soil Survey Division— Land Development Department, Bangkok, Thailand, p. 45–6.
Varanda L.C., Morales M.P., Jafelicci M. & Serna C.J. (2002). J. Mater. Chem. 12, 36493653.
Vieira A.P., Berndt G., de Souza Junior I.G., di Mauro E., Paesano Junior A., de Santana H., da Costa A.C.S., Zaia C.T.B.V. & Zaia D.A.M. (2011). Amino Acids 40, 205214.
Villalobos M., Cheney M.A. & Cienfuegos J.A. (2009). J. Colloid Interface Sci. 336, 412422.
Wade M.L., Agresti D.G., Wdowiak T.J. & Armendarez L.P. (1999). J. Geophys. Res. 104, 84898507.
Wang G.H., Li W.C., Jia K.M., Spliethoff B., Schüth F. & Lu A.H. (2009). Appl. Catal. A 364, 4247.
Wang G.H., Li W.C., Jia K.M. & Lu A.H. (2011). Nano Brief Rep. Rev. 6, 469479.
Webb J., Macey D.J., Chua-anusorn W.T.G., Pierre S.T., Brooker L.R., Rahman I. & Noller B. (1999). Coord. Chem. Rev. 190192, 1199–1215.
Xiaojuan Y., Huaimin G. & Jiwei W. (2010). J. Mol. Struct. 977, 5661.
Zaia D.A.M. (2012). Int. J. Astrobiol. 11, 229234.
Zaia D.A.M., Zaia C.T.B.V. & de Santana H. (2008). Orig. Life Evol. Biosph. 38, 469488.
Zhu G., Zhu X., Fan Q. & Wan X. (2011). Spectrochim. Acta A 78, 11871195.
Zysler R.D., Fiorani D., Testa A.M., Suber L., Agostinelli E. & Godinho M. (2003). Phys. Rev. B 68(1–4), 212408.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 32 *
Loading metrics...

Abstract views

Total abstract views: 235 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st February 2018. This data will be updated every 24 hours.