Skip to main content

Syntone chemistry and prebiotic stage in life evolution 1. Aziridinone, a key compound in formation of the first proteinogenic amino acids and polypeptides

  • Gheorghe Surpateanu (a1)

In this paper is proposed a new theory concerning the formation of the first proteinogenic amino acids and their corresponding polypeptides starting of three syntones: methylene, nitrene and carbon monoxide. First, at low temperature in nitrogen, these three syntones form aziridinone, an asimetric compound in special conditions. Next, by a series of radical chain, izomerization, cyclization, elimination and polymerization reactions, apparently without a well defined transition states are formed a series of precursor syntones. Finally, these more structured syntones at the contract with the components of primary atmosphere, especially with water, ammonia, hydrogen sulphide, even with carbon dioxide and methane offer the first proteinogenic amino acids and their first corresponding polypeptides. As a very important aspect, the aziridinone cycle furnish the backbone of proteinogenic amino acids. The formation of each proteinogenic amino acid moiety also as its participation to construction of polypeptide structures were estimated by two parameters: (1) the complex structural factor, F e and (2) the participation coefficient, C p respectively. Dominantly, the quantitative results given in this paper were acquired by structural, thermodynamical and reactivity studies using DGauss with the B88-LYP GGA energy functional with high integral accuracy. Finally, an experimental assembly for obtention of amino acids and polypeptides is proposed. Brief, the three initial syntones: CH2, NH and CO, in nitrogen form aziridinone. That, in reactions with the same three syntones form, the more structured syntone precursors of proteinogenic amino acids and polypeptides. At the contact with primary atmosphere components are formed the first proteinogenic amino acids and polypeptides. The first polypeptides appear from polypeptide precursors and not from proteinogenic amino acids.

Corresponding author
Hide All

Personal address: 26, Strada Cetatii, Targu Neamt, jud. Neamt, Romania

Hide All
Abe, Y. (1997). Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 2739.
Abelson, P.H. (1966). Chemical events on the primitive earth. Proc. Natl. Acad. Sci. U.S.A. 55, 13651372.
Adamson, D.W. & Kenner, J. (1935). The preparation of diazomethane and its homologues. J. Chem. Soc. 43, 286289.
Allen, M.L., Metz, A.M., Timmer, R.T., Rhoads, R.E. & Browning, K.S. (1992). Isolation and sequence of the cDNAs encoding the subunits of the isozyme form of wheat protein synthesis initiation factor 4F.J. Biol. Chem. 267, 2323223236.
Al-Warhi, T.I., Al-Hazimi, H.M.A. & El-Faham, A. (2012). Recent development in peptide coupling reagents. J. Saudi Chem. Soc. 16, 97116.
Ambrogelly, A., Palioura, S. & Söll, D. (2007). Natural expansion of the genetic code. Nat. Chem. Biol. 3, 2935.
Anders, E. (1989). Pre-biotic organic matter from comets and asteroids. Nature 342, 255257.
Arndt, F. (1943). Diazomethane. In Organic Syntheses, Collective Volume 2, ed. Blatt, A.H., pp. 165166. John Wiley and Sons, Inc., New York.
Arndt, F. & Amende, J. (1930). Zur Darstellung von Diazomethan. Angewandte Chemie Int. Ed. Eng. 43, 444446.
Atherton, E. & Sheppard, R.C. (1989). Solide Phase Peptide Synthesis: A Practical Approach. Oxford University Press, UK.
Atreya, S.K., Mahaffy, P.R., Niemann, H.B., Wong, M.H. & Owen, T.C. (2003). Composition and origin of the atmosphere of Jupiter – an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105112.
Bach, R.D. & Dmitrenko, O. (2006). The effect of carbonyl substitution on the strain energy of small ring compounds and their six-member ring reference compounds. J. Am. Chem. Soc. 128, 45984611.
Baltrusaitis, J., Patterson, E. & Hatch, C. (2012). Computational studies of CO2 activation via photochemical reactions with reduced sulfur compounds. J. Phys. Chem. A 116, 93319339.
Barbier, B., Chabin, A., Chaput, D. & Brack, A. (1998). Photochemical processing of amino acids in earth orbit. Planet. Space Sci. 46, 391398.
Baslé, E., Joubert, N. & Pucheault, M. (2010). Protein chemical modification on endogenous amino acids. Chem. Biol. 17, 213227.
Beavis, R.C. (1997). Protecting groups used in peptide synthesis [online].
Becerra, R. & Monty Frey, H. (1987). Insertion reactions of methylene. Chem. Phys. Lett. 138, 330332.
Bernardi, F., Olivucci, M. & Robb, M.A. (1996). Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25, 321328.
Bernstein, M.P., Dworkin, J.P., Sandford, S.A., Cooper, G.W. & Allamandola, L.J. (2002). Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401403.
Blagojevic, V., Petrie, S. & Bohme, D.K. (2003). Gas-phase syntheses for interstellar carboxylic and amino acids. Mon. Not. R. Astron. Soc. 339, L7L11.
Bodanszky, M. (1993). Principles of Peptide Synthesis, 2nd edn. Springer-Verlag, Berlin.
Brack, A. (2007). From interstellar amino acids to prebiotic catalytic peptides: a review. Chem. Biodiversity 4, 665679.
Brase, S. & Banert, K. (2010). Organic Azides: Syntheses and Applications. John Wiley & Sons, USA.
Cache Worksystem Library version (2006). Fujitsu, Poland.
Cesare, V., Lyons, T.M. & Lengyel, I. (2002). A high-yielding general synthesis of α-lactams. Synthesis 12, 17161720.
Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K. & Garrel, L. (2001). Carbonaceous meteorites as a source of sugar-related organic compounds for the early earth. Nature 414, 879883.
Cottin, H., Gazeau, M.C. & Raulin, F. (1999). Cometary organic chemistry: a review from observations, numerical and experimental simulations. Planet. Space Sci. 47, 11411162.
Dalgarno, A. (2006). The galactic cosmic ray ionization rate. Proc. Natl. Acad. Sci. U.S.A. 103, 1226912273.
Díaz-Rodrígueaz, A. & Davis, B.G. (2011). Chemical modification in the creation of novel biocatalysts. Curr. Opin. Chem. Biol. 15, 211219.
Duan, P., Dai, L. & Savage, P.E. (2010). Kinetics and mechanism of N-substituted amide hydrolysis in high-temperature water. J. Supercritical Fluids 51, 362368.
Dyer, K.F. (1971). The quiet revolution: a new synthesis of biological knowledge. J. Biol. Educ. 5, 1524.
Ehrenfreund, P., Bernstein, M.P., Dworkin, J.P., Sandford, S.A. & Allamandola, L.J. (2001). The photostability of amino acids in space. Astrophys. J. 550, L95L99.
El Firdoussi, A., Esseffar, M., Bouab, W., Abboud, J.-L.M., , O. & Yáñez, M. (2004). Push−pull electronic effects in charge-transfer complexes: the case of N−H and N−Me lactams. J. Phys. Chem. A 108, 1056810577.
El Firdoussi, A., Esseffar, M., Bouab, W., Abboud, J.-L.M., , O., Yáñez, M. & Ruasse, M.F. (2005). Density functional theory study of the hydrogen bond interaction between lactones, lactams, and methanol. J. Phys. Chem. A 109, 91419148.
Elsila, J.E., Dworkin, J.P., Bernstein, M.P., Martin, M.P. & Sandford, S.A. (2007). Mechanisms of amino acid formation in interstellar ice analogs. Astrophys. J. 660, 911918.
Elsila, J.E., Glavin, D.P. & Dworkin, J.P. (2009). Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44, 13231330.
Fegley, B. Jr., Prinn, R.G., Hartman, H. & Watkins, G.H. (1986). Chemical effects of large impacts on the earth's primitive atmosphere. Nature 319, 305308.
García-Hernández, D.A., Manchado, A., García-Lario, P., Stanghellini, L., Villaver, E., Shaw, R.A., Szczerba, R. & Perea-Calderon, J.V. (2010). Formation of fullerenes in H-containing planetary nebulae. Astrophys. J. Lett. 724, L39L43.
Geballe, T.R. & Oka, T. (1996). Detection of H+ 3 in interstellar space. Nature 384, 334335.
Geysen, H.M., Meloen, R.H. & Barteling, S.J. (1984). Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. U.S A. 81, 39984002.
Goumans, T.P.M., Ehlers, A.W., Lammertsma, K. & Würtherwein, E.-U. (2003). Endo/exo preferences for double bonds in three-membered rings including phosphorus compounds. Eur. J. Organic Chem. 15, 29412946.
Grainger, R.S. & Munro, K.R. (2015). Recent advances in alkylidene carbene chemistry. Tetrahedron 71, 77957835.
Greenberg, A., Chiu, Y.-Y., Johnson, J.L. & Liebman, J.F. (1991). The resonance energy of amides, the structure of aziridinone, and its relationship to other strained lactams. Struct. Chem. 2, 117126.
Greenberg, A., Hsing, H.-J. & Liebman, J.F. (1995). Aziridinone and 2-azetidinone and their protonated structures. An ab initio molecular orbital study making comparisons with bridgehead bicyclic lactams and acetamide. J. Mol. Struc. (THEOCHEM) 338, 83100.
Greenberg, A., Moore, D.T. & DuBois, T.D. (1996). Small and medium-sized bridgehead bicyclic lactams: a systematic ab initio molecular orbital study. J. Am. Chem. Soc. 118, 86588668.
Guan, J.S., Xie, H. & Ding, X. (2015). The role of epigenetic regulation in learning and memory. Exp. Neurol. 268, 3036.
Harrison, A.G., Csizmadia, I.G., Tang, T.H. & Tu, Y.P. (2000). Reaction competition in the fragmentation of protonated dipeptides. J. Mass Spectrom. 35, 683688.
Jung, S.-H., Jang, S.-C., Kim, J.-W., Kim, J.-W. & Choi, J.-H. (2015). Theoretical investigation of the radical–radical reaction of O(3P) + C2H3 and comparison with gas-phase crossed-beam experiments. J. Phys. Chem. A 119, 1176111771.
Kasamatsu, T., Kaneko, T., Saito, T. & Kobayashi, K. (1997). Formation of organic compounds in simulated interstellar media with high energy particles. Bull. Chem. Soc. Jpn 70, 10211026.
Kassaee, M.Z., Musavi, S.M. & Jalalimanesh, N.J. (2008). A new generation of intermediates at ab initio and DFT levels: allylic carbenonitrenes, C =(X)C-N(X = H, CH3, COOH, F, OH, OCH3, CF3, CN, and NH2 . J. Theoretical Comput. Chem. 7, 367379.
King, J.L. & Jukes, T.H. (1969). Non-Darwinian evolution. Science 164, 788798.
Kirmse, W. (1971). Carbene Chemistry, 2nd edn. Academic Press, New York.
Kisumi, M., Komatsubara, S. & Chibata, I. (1977). Pathway for isoleucine formation form pyruvate by leucine biosynthetic enzymes in leucine-accumulating isoleucine revertants of Serratia marcescens. Biochem. J. 82, 95103.
Kobayashi, K., Kasamatsu, T., Kaneko, T., Koike, J., Oshima, T., Saito, T., Yamamoto, T. & Yanagawa, H. (1995). Formation of amino acid precursors in cometary ice environments by cosmic radiation. Adv. Space Res. 16, 2126.
Kobayashi, K., Kaneko, T., Saito, T. & Oshima, T. (1998). Amino acid formation in gas mixtures by high energy particle irradiation. Origins Life Evol. Biosph. 28, 155165.
Kobayashi, K., Ogawa, T., Tonishi, H., Kaneko, T., Takano, Y., Takahashi, J.I., Saito, T., Muramatsu, Y., Yoshida, S. & Utsumi, Y. (2008). Synthesis of amino acid precursors from simulated interstellar media by high-energy particles or photons. Electron. Commun. Jpn. 91, 1521.
Liebman, J.F. & Greenberg, A. (1974). Estimation by bond-additivity schemes of the relative thermodynamic stabilities of three-membered-ring systems and their open dipolar forms. J. Org Chem. 39, 123130.
Loeb, A. (2014). The habitable epoch of the early universe. Int. J. Astrobiol. 13, 337339.
Merrifield, R.B. (1963). Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 21492154.
Miller, M.W., Audrieth, L.F. & Filbert, W.F. (1946). Inorganic Syntheses, vol. 2. McGraw-Hill Book Company.
Miller, S.I. (1953). A production of amino acids under possible primitive earth conditions. Science 117, 528529.
Montalbetti, C.A.G.N. & Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron 61, 1082710852.
Mulas, G., Malloci, G., Joblin, C. & Toublanc, D. (2006). Estimated IR and phosphorescence emission fluxes for specific polycyclic aromatic hydrocarbons in the red rectangle. Astron. Astrophys. 446, 537549.
Nickel, A. & Stadler, S.C. (2015). Role of epigenetic mechanisms in epithelial-to mesenchymal transition of breast cancer cells. Transl. Res.: J. Lab. Clinical Med. 165, 126142.
Park, H., Suh, J. & Lee, S. (1999). Ab initio studies of the intramolecular amide hydrolysis in N-methylmaleamic acids. J. Mol. Struct.: THEOCHEM 490, 4754.
Pizzarello, S. & Weber, A.L. (2004). Prebiotic amino acids as asymmetric catalysts. Science 303, 11511151.
Schesinger, G. & Miller, S.L. (1983). Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids. J. Mol. Evol. 19, 376382.
Schnölzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S.B.H. (1992). In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int. J. Peptide Protein Res. 40, 180193.
Schowen, R.L., Jayaraman, H. & Kershner, L. (1966). Kinetic evidence for a two-step mechanism of amide hydrolysis. Tetrahedron Lett. 7, 497500.
Sheehan, J.C. & Izzo, P.T. (1949). The reaction of diazomethane with isocyanates and isothiocyanates. J. Am. Chem. Soc. 71, 40594062.
Shustov, G.V., Kachanov, A.V., Chervin, I.I., Kostyanovsky, R.G. & Rauk, A. (1994). Stereochemistry and chiroptical properties of 1,3-dialkylaziridinones (α-lactams). chiral rules for the nonplanar amide chromophore. Can. J. Chem. 72, 279286.
Sims, I.R. & Smith, I.W.M. (1995). Gas-phase reactions and energy transfer at very low temperatures. Annu. Rev. Phys. Chem. 46, 109138.
Sorrell, W.H. (2001). Origin of amino acids and organic sugars in interstellar clouds. Astrophys. J. 555, L129L132.
Surpateanu, G. & Lungu, N.C. (2011). Chemical behaviour of methylene in the presence of ammonia, carbon dioxide and water. Rev. Chim. Bucharest 62, 11071110.
Surpateanu, G., Catteau, J.P., Karafiloglou, P. & Lablache-Combier, A. (1976). Structure and reactivity of cycloimmonium ylides. Tetrahedron 32, 26472663.
Takano, Y., Takahashi, J., Kaneko, T., Marumo, K. & Kobayashi, K. (2007). Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light. Earth Planet. Sci. Lett. 254, 106114.
Tang, T.-H., Fang, D.-C., Harrison, A.G. & Csizmadia, I.G. (2004). A computational study of the fragmentation of b3 ions derived from protonated peptides. J. Mol. Struct. (THEOCHEM) 675, 7993.
Thaddeus, P. (2006). The prebiotic molecules observed in the interstellar gas. Phil. Trans. R. Soc. B 361, 16811687.
Tian, F., Toon, O.B., Pavlov, A.A. & De Sterck, H. (2005). A hydrogen-rich early earth atmosphere. Science 308, 10141017.
Treschanke, L. & Rademacher, P. (1985). Electronic structure and conformational properties of the amide linkage: part 1. Geometric and electronic structure of lactams as determined by MNDO calculations. J. Mol. Struct. (THEOCHEM) 122, 3545.
Urey, H.C. (1952). On the early chemical history of the earth and the origin of life. Proc. Natl. Acad. Sci. U.S.A. 38, 351363.
Wall, M.A., Coleman, D.E., Lee, E., Iñiguez-Lluhi, J.A., Posner, B.A., Gilman, A.G. & Sprang, S.R. (1995). The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 10471058.
Wegner, M., Neddermann, D., Piorunska-Stolzmann, M. & Jagodzinski, P.P. (2014). Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res. Clin. Pract. 105, 164175.
Wiklind, T. & Combes, F. (1996). The redshift of the gravitational lens of PKS1830–211 determined from molecular absorption lines. Nature 379, 139141.
Williams, S.M. & Brodbelt, J.S. (2004). MS n characterization of protonated cyclic peptides and metal complexes. J. Am. Soc. Mass Spectrom. 15, 10391054.
Wincel, H., Fokkens, R.H. & Nibbering, N.M.M. (2000). Peptide bond formation in gas-phase ion/molecule reactions of amino acids: a novel proposal for the synthesis of prebiotic oligopeptides. Rapid Commun. Mass Spectrom. 14, 135140.
Zugravescu, J., Rucinschi, E. & Surpateanu, G. (1970). The action of carbenes on N-heterocycles (I). Tetrahedron Lett. 11, 941942.
Zugravescu, J., Rucinschi, E. & Surpateanu, G. (1971). Isoquinolinium-ylures. Sur les réactions de décomposition de quelques isoquinoleinium ylures. Revue Roumaine de Chimie 16, 10991104.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 170 *
Loading metrics...

* Views captured on Cambridge Core between 31st August 2017 - 19th March 2018. This data will be updated every 24 hours.