Skip to main content
×
Home

Why did life emerge?

  • Arto Annila (a1) and Erkki Annila (a2)
Abstract
Abstract

Many mechanisms, functions and structures of life have been unraveled. However, the fundamental driving force that propelled chemical evolution and led to life has remained obscure. The second law of thermodynamics, written as an equation of motion, reveals that elemental abiotic matter evolves from the equilibrium via chemical reactions that couple to external energy towards complex biotic non-equilibrium systems. Each time a new mechanism of energy transduction emerges, e.g., by random variation in syntheses, evolution prompts by punctuation and settles to a stasis when the accessed free energy has been consumed. The evolutionary course towards an increasingly larger energy transduction system accumulates a diversity of energy transduction mechanisms, i.e. species. The rate of entropy increase is identified as the fitness criterion among the diverse mechanisms, which places the theory of evolution by natural selection on the fundamental thermodynamic principle with no demarcation line between inanimate and animate.

Copyright
References
Hide All
Alonso M. & Finn E.J. (1983). Fundamental University Physics Quantum and Statistical Physics. Addison-Wesley, London.
Atkins P.W. (1998). Physical chemistry. Oxford University Press, New York.
Bak P. (1996). How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York.
Bejan A. (1997). Advanced Engineering Thermodynamics. Wiley, New York.
Brooks D.R. & Wiley E.O. (1986). Evolution as Entropy: Toward a Unified Theory of Biology. The University of Chicago Press, Chicago.
Chaisson E.J. (1998). The cosmic environment for the growth of complexity. Biosystems 46, 1319.
Darwin C. (1859). On the Origin of Species. John Murray, London.
Dewar R.C. (2003). Information theory explanation of the fluctuation theorem, maximum entropy production, and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631641.
Eigen M. & Schuster P. (1979). The Hypercycle: A Principle of Natural Self-organization. Springer, Berlin.
Eldredge N. & Gould S.J. (1972). Models in Paleobiology, ed. Schopf T.J.M., pp. 82115. Freeman, Cooper, San Francisco.
Fry I. (2000). The Emergence of Life on Earth. Rutgers University Press, New Jersey.
Gibbs J.W. (1993–1994). The Scientific Papers of J. Willard Gibbs. Ox Bow Press, Woodbridge, CT.
Gould S.J. (2002). The Structure of Evolutionary Theory. Harvard University Press, Cambridge, MA.
Grönholm T. & Annila A. (2007). Natural distribution. Math. Biosci. 210, 659667.
Jaakkola S., El-Showk S. & Annila A. (2008a). The driving force behind genomic diversity. Biophys. Chem. 134, 232238. arXiv:0807.0892.
Jaakkola S., Sharma V. & Annila A. (2008b). Cause of chirality consensus. Curr. Chem. Biol. 2, 5358.
Jacob F. (1977). Evolution and tinkering. Science 196, 11611166.
Jaynes E.T. (1957). Information theory and statistical mechanics. Phys. Rev. 106, 620630.
Kacser H. (1960). Kinetic models of development and heredity. Models and analogues in biology. Symp. Soc. Exptl. Biol. 14, 1327. Cambridge University Press, Cambridge.
Kaila V.R.I. & Annila A. (2008). Natural selection for least action. Proc. R. Soc. A 464, 30553070.
Karnani M. & Annila A. (2008). Gaia again. Biosystems doi: 10.1016/j.biosystems.2008.07.003.
Kondepudi D. & Prigogine I. (1998). Modern Thermodynamics. Wiley, New York.
Kullback S. (1959). Information Theory and Statistics. Wiley, New York.
Lineweaver C.H. (2005). Cosmological and biological reproducibility: limits of the maximum entropy production principle. In Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond, eds Kleidon A. & Lorenz R.D. Springer, Heidelberg.
Lorenz R.D. (2002). Planets life and the production of entropy. Int. J. Astrobiology 1, 313.
Lotka A.J. (1925). Elements of Mathematical Biology. Dover, New York.
Lovelock J.E. (1988). The Ages of Gaia. Oxford University Press, Oxford.
Martin P. (2006). Beginning research on the quantification of spatial order. In 18th Annual Colloquium of the Spatial Information Research Centre (SIRC 2006: Interactions and Spatial Processes), 6–7 November, Dunedin, New Zealand, pp. 109125.
Mendoza E. (ed.) (1960). Reflections on the Motive Power of Fire by Sadi Carnot and other Papers on the Second Law of Thermodynamics by E. Clapeyron and R. Clausius. Dover, New York.
Miller S.L. (1953). Production of amino acids under possible primitive earth conditions. Science 117, 528.
Oparin A.I. (1952). The Origin of Life. Dover, New York.
Orgel L.E. (1998). The origin of life – a review of facts and speculations. TIBS 23, 491495.
Peacocke A.R. (1996). A Pioneer of the Kinetic Approach. J. Theor. Biol. 182, 219222.
Prigogine I. & Wiame J.M. (1946). Biologie et thermodynamique des phenomenes irreversibles, Experientia 2, 451453.
Pross A. (2003). The driving force for life's emergence: kinetic and thermodynamic considerations. J. Theor. Biol. 220, 393406.
Pross A. (2005). On the emergence of biological complexity: life as a kinetic state of matter. Orig. Life Evol. Biosph. 35, 151166.
Sagan D. (2007). From producing entropy to reducing gradients to spreading energy: Understanding the essence of the second law. In AIP Conference Proceedings (vol. 1033). Meeting the Entropy Challenge: An International Thermodynamics Symposium in Honor and Memory of Professor Joseph H. Keenan, 4–5 Oct 2007, Cambridge, MA, USA. Beretta G.P., Ghoniem A. & Hatsopoulos G., pp. 194197. American Institute of Physics, New York.
Salthe S.N. (1985). Evolving hierarchal system. Columbia University Press, New York.
Salthe S.N. (2004). The origin of new levels in dynamical hierarchies. Entropy 6, 327343.
Schneider E.D. & Kay J.J. (1994). Life as a manifestation of the 2nd law of thermodynamics. Math. Comp. Model. 19, 2548.
Schrödinger E. (1948). What is Life? The physical aspects of the living cell. Cambridge University Press, Cambridge.
Shannon C.E. (1948). A mathematical theory of communication. Bell System Technical Journal 27, 379423 & 623656.
Sharma V. & Annila A. (2007). Natural process – natural selection. Biophys. Chem. 127, 123128.
Strogatz S.H. (2000). Nonlinear Dynamics and Chaos with Applications To Physics, Biology, Chemistry and Engineering. Westview, Cambridge, MA.
Swenson R. (1998). Spontaneous order, evolution, and autocatakinetics: the nomological basis for the emergence of meaning. In van de Vijver G., Salthe S. & Delpos M. (eds) Evolutionary Systems: Biological and Epistemological Perspectives on Selection and Self-organization, pp. 155180. Kluwer, Dordrecht.
Ulanowicz R.E. & Hannon B.M. (1987). Life and the production of entropy. Proc. R. Soc. London B. 232, 181192.
Verhulst P.F. (1845). Recherches mathématiques sur la loi d'accroissement de la population. Nouv. Mém. Acad. Roy. Sci. Belleslett. Bruxelles 18, 138.
Waage P. & Guldberg C.M. (1864). Forhandlinger, vol. 35 (Videnskabs-Selskabet i Christiana).
Weber B.H., Depew D.J. & Smith J.D. (eds) (1988). Entropy, Information and Evolution. Cambridge, MA, MIT Press.
Wilson E.O. (1992). The Diversity of Life. Norton, New York.
Woese C.R. (1998). The universal ancestor. Proc. Natl. Acad. Sci. 95, 68546859.
Würtz P, Annila A. (2008). Roots of diversity relations. J. Biophys. (in press).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 6
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 264 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.