Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T00:58:30.846Z Has data issue: false hasContentIssue false

24GHz Digital beamforming radar with T-shaped antenna array for three-dimensional object detection

Published online by Cambridge University Press:  16 May 2012

Marlene Harter*
Affiliation:
Karlsruher Institut für Technologie (KIT), Institut für Hochfrequenztechnik und Elektronik (IHE), Kaiserstrasse 12, 76131 Karlsruhe, Germany Siemens AG, Corporate Technology, Corporate Research and Technologies, Otto-Hahn-Ring 6, 81739 München, Germany
Tom Schipper
Affiliation:
Karlsruher Institut für Technologie (KIT), Institut für Hochfrequenztechnik und Elektronik (IHE), Kaiserstrasse 12, 76131 Karlsruhe, Germany
Lukasz Zwirello
Affiliation:
Karlsruher Institut für Technologie (KIT), Institut für Hochfrequenztechnik und Elektronik (IHE), Kaiserstrasse 12, 76131 Karlsruhe, Germany
Andreas Ziroff
Affiliation:
Siemens AG, Corporate Technology, Corporate Research and Technologies, Otto-Hahn-Ring 6, 81739 München, Germany
Thomas Zwick
Affiliation:
Karlsruher Institut für Technologie (KIT), Institut für Hochfrequenztechnik und Elektronik (IHE), Kaiserstrasse 12, 76131 Karlsruhe, Germany
*
Corresponding author: M. Harter Email: Marlene.Harter@kit.edu

Abstract

This paper introduces a radar system for three-dimensional (3D) object detection and imaging. The presented 3D measurement method combines the frequency-modulated continuous wave (FMCW) approach for range measurements with a multiple-input multiple-output (MIMO) technique for digital beamforming in two dimensions. With an orthogonal arrangement of the antenna arrays for transmit and receive, the angular information is obtained in azimuth and elevation without mechanical beamsteering. The proposed principle allows performing 3D imaging by means of the acquired range, azimuth, and elevation information with a minimum of required hardware. Starting from the realization of the 3D radar imaging concept, the hardware architecture and the developed prototype are discussed in detail. Furthermore, the object detection capability of the 3D imaging radar system is demonstrated by measurements. The results show that the introduced 3D measurement concept in its realization is well suited for numerous applications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Menzel, W.: Millimeter-wave radar for civil applications, in European Radar Conf. (EuRAD), Paris, France, 2010.Google Scholar
[2]Tokoro, S.: Automotive application systems of a millimeter-wave radar, in Intelligent Vehicles Symp., Tokyo, Japan, 1996.Google Scholar
[3]Brooker, G.; Widzyk-Capehart, E.; Scheding, S.; Hennessy, R.; Lobsey, C.: Millimeter wave radar visualisation in mines, in European Radar Conf. (EuRAD), Munich, Germany, 2007.CrossRefGoogle Scholar
[4]Savelyev, T.: Comparison of 10–18 GHz SAR and MIMO-based short-range imaging radars. Int. J. Microw. Wirel. Technol., 2 (3–4), (2010), 369377.CrossRefGoogle Scholar
[5]Schuler, K.; Younis, M.; Lenz, R.; Wiesbeck, W.: Array design for automotive digital beamforming radar system, in IEEE Inter. Radar Conf., Arlington, USA, 2005.Google Scholar
[6]Mayer, W.; Buntz, S.; Leier, H.; Menzel, W.: Imaging radar sensor front-end with large transmit array, in European Radar Conf. (EuRAD), Amsterdam, Netherlands, 2004.Google Scholar
[7]Steyskal, H.: Digital beamforming – an emerging technology, in Military Coummunications Conf. (MILCOM), San Diego, USA, 1988.Google Scholar
[8]Weiss, M.: Digital Antenna, NATO SET-136 Lecture Series Multistatic Surveillance and Reconnaissance: Sensor, Signals and Data Fusion, NATO Research and Technology Organisation, La Spezia, Italy, April 2009.Google Scholar
[9]Harter, M.; Kornbichler, A.; Zwick, T.: A modular 24 GHz radar sensor for for digital beamforming on transmit and receive, in European Radar Conf. (EuRAD), Paris, France, 2010.Google Scholar
[10]Mills, B. Y.; Little, A. G.: A high resolution aerial system of a new type. Aust. J. Phys., 6, (1953), 272278.CrossRefGoogle Scholar
[11]Kraus, J. D.: Radio Astronomy, McGraw-Hill, New York, 1966, 187194.Google Scholar
[12]Harter, M.; Ziroff, A.; Zwick, T.: Three-dimensional radar imaging by digital beamforming, in European Radar Conf. (EuRAD), Manchester, UK, 2011.Google Scholar
[13]Asano, Y.; Ohshima, S.; Harada, T.; Ogawa, M.; Nishikawa, K.: Proposal of millimeter-wave holographic radar with antenna switching, in IEEE MTT-S Int. Microwave Symp. Digest, Phoenix, USA, 2001.Google Scholar
[14]Stove, A. G.: Linear FMCW radar techniques. IEE-Radar Signal Process., 139 (5), (1992), 343350.CrossRefGoogle Scholar
[15]Harris, F. J.: On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE, 6, (1), (1987), 5183.Google Scholar
[16]Steinberg, B.; Subbaram, H.: Microwave Imaging Techniques, John Wiley and Sons, Inc., New York, 1991.Google Scholar
[17]Harter, M.; Zwick, T.: An FPGA controlled digital beamforming radar sensor with three-dimensional imaging capability, in Int. Radar Symp. (IRS), Leipzig, Germany, 2011.Google Scholar
[18]Harter, M.; Chaudhury, S.; Ziroff, A.; Zwick, T.: Realization of an innovative 3D imaging digital beamforming radar system, in IEEE CIE Conf. on Radar, Chengdu, China, 2011.CrossRefGoogle Scholar