Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Taeb, Aidin Basha, Mohammed A. Gigoyan, Suren Marsden, Mungo and Safavi-Naeini, Safieddin. 2013. Label-free DNA sensing using millimeter-wave silicon WGM resonator. Optics Express, Vol. 21, Issue. 17, p. 19467.


    Yurchenko, Vladimir B. Altintas, Ayhan Ciydem, Mehmet and Koc, Sencer 2013. EXPERIMENTAL CONDITIONS FOR THE EXCITATION OF THIN DISK WHISPERING-GALLERY-MODE RESONATORS. Progress In Electromagnetics Research C, Vol. 43, p. 29.


    ×

A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis

  • Aidin Taeb (a1), Mohammad Neshat (a2), Suren Gigoyan (a3) and Safieddin Safavi-Naeini (a1)
  • DOI: http://dx.doi.org/10.1017/S1759078712000384
  • Published online: 24 May 2012
Abstract

A dielectric waveguide-based structure coupled to a whispering gallery mode (WGM) disc resonator is introduced as a low-cost integrable millimeter-wave (mm-wave) bio-sensor. An efficient variational analysis method is developed and applied to the WGM. Three sets of sensors, operating in different ranges of frequency from 85 to 220 GHz, are fabricated and tested. The performance of the fabricated bio-sensor is demonstrated for sensing different concentrations of glucose solution samples at D-band. Also, the sensitivity, selectivity, and repeatability of these sensors are examined.

Copyright
Corresponding author
Corresponding author: A. Taeb Email: ataeb@maxwell.uwaterloo.ca
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]N. Gagnon ; J. Shaker ; P. Berini ; L. Roy ; A. Petosa : Material characterization using a quasi-optical measurement system. IEEE Trans. Instrum. Meas., 52 (2003), 333336.

[2]H. Yoshikawa ; A. Nakayama : Measurements of complex permittivity at millimeter-wave frequencies with an end-loaded cavity resonator. IEEE Trans. Microw. Theory Tech., 56 (2008), 20012007.

[3]G. Annino ; M. Cassettari ; I. Longo ; M. Martinelli : Whispering gallery modes in a dielectric resonator: characterization at millimeter wavelength. IEEE Trans. Microw. Theory Tech., 45 (1997), 20252034.

[4]J. Krupka ; M.E. Tobar ; J.G. Hartnett ; D. Cros ; J.M. Floch : Extremely high-Q factor dielectric resonators for millimeter-wave applications. IEEE Trans. Microw. Theory Tech., 53 (2005), 702711.

[5]M. Neshat ; H. Chen ; S. Gigoyan ; D. Saeedkia ; S. Safavi-Naeini : Whispering gallery mode resonance sensor for dielectric sensing of drug tablets. Meas. Sci. Technol., 21 (2010), 015202(11).

[6]D.L. Creedon ; Y. Reshitnyk ; W. Farr ; J.M. Martinis ; T.L. Duty ; M.E. Tobar : High Q-factor sapphire whispering gallery mode microwave resonator at single photon energies and millikelvin temperature. Appl. Phys. Lett., 98 (2011), 222903(3).

[7]C. Vedrenne ; J. Arnaud : Whispering gallery modes of dielectric resonators. IEE Proc. Microw. Opt. Antennas, 129 (1982), 183187.

[8]F. Vollmer ; S. Arnold : Whispering gallery mode bio-sensing: label free detection down to single molecules. Nat. Methods, 5 (2008), 591596.

[9]S. Blair ; Y. Chen : Resonant-enhanced evanescent-wave fluorescence bio-sensing with cylindrical optical cavities. Appl. Opt., 40 (2001), 570582.

[10]J. Zhu ; : On-chip single nanoparticle detection and sizing by mode splitting in an ultra-high-Q micro resonator. Nat. Photonics, 4 (2010), 4649.

[11]H. Quan ; Z. Guo : Simulation of single transparent molecule interaction with an optical microcavity. Nanotechnology, 18 (2007), 15.

[13]M. Tsuji ; H. Shigesawa ; K. Takiyama : On the complex resonator frequency of open dielectric resonators. IEEE Trans. Microw. Theory Tech., 31 (1983), 392396.

[14]M.E. Tobar ; A.G. Mann : Resonant frequencies of higher order modes in cylindrical anisotropic dielectric resonators. IEEE Trans. Microw. Theory Tech., 39 (1991), 20772081.

[15]K. Okamoto : Fundamentals of Optical Waveguides, 2nd ed., Elsevier, Burlington, Massachusets, 2006.

[16]R.K. Mongia : Resonant frequency of cylindrical dielectric resonator placed in an MIC environment. IEEE Trans. Microw. Theory Tech., 38 (1990), 802804.

[17]M. Jaworski ; M.W. Pospieszalski : An accurate solution of the cylindrical dielectric resonator problem. IEEE Trans. Microw. Theory Tech., 27 (1979), 639643.

[18]V.H. Rumsey : The reaction concept in electromagnetic theory. Phys. Rev., 94 (1954), 14831491.

[19]J. Krupka ; K. Derzakowski ; A. Abramowicz ; M.E. Tobar ; R.G. Geyer : Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials. IEEE Trans. Microw. Theory Tech., 47 (1999), 752759.

[20]J.C. Pickup ; F. Hussain ; N.D. Evans ; O.J. Rolinsky ; D.J. Birch : Fluorescence-based glucose sensors. Biosens. Bioelectron., 20 (2005), 25552565.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: