Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T06:45:31.628Z Has data issue: false hasContentIssue false

The butterfly Danaus chrysippus (Lepidoptera: Nymphalidae) in Kenya is variably infected with respect to genotype and body size by a maternally transmitted male-killing endosymbiont (Spiroplasma)

Published online by Cambridge University Press:  01 June 2007

Jeremy K. Herren*
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
Ian Gordon
Affiliation:
ICIPE—African Insect Science for Food and Health, PO Box 30772-00100, Nairobi, Kenya
Peter W. H. Holland
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
David Smith
Affiliation:
Natural History Museum, Eton College, Windsor SL4 6EW, UK
Get access

Abstract

Female-biased sex ratios in Danaus chrysippus (Linnaeus) (family Nymphalidae, subfamily Danainae, tribe Danaini) populations are attributed to the action of an endosymbiotic ‘male-killer’ bacterium of the genus Spiroplasma. In stark contrast to the extensive geographic range of their host, the Spiroplasma appears to be restricted to East Africa, where four African D. chrysippus subspecies exist sympatrically and form a hybrid zone. In this study, specimens collected at three sample sites within the hybrid zone were screened for Spiroplasma infection. The findings demonstrate that, within the hybrid zone, the frequency of Spiroplasma infection varies both spatially and temporally. Host genotype at three biallelic wing pattern loci, representative of subspecific genetic divergence, is correlated to Spiroplasma infection. Linkage between the frequency of the recessive a allele and Spiroplasma is established, suggesting the presence of a linked allele controlling infection susceptibility. In addition, a negative correlation between D. chrysippus forewing length and Spiroplasma infection is identified, suggesting that infection has a deleterious effect on body size.

Type
Research Paper
Copyright
Copyright © ICIPE 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonduriansky, R. (2001) The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biological Reviews of the Cambridge Philosophical Society 72, 283327.Google Scholar
Clarke, C. A., Sheppard, P. M. and Smith, A. G. (1973) The genetics of fore and hindwing colour in crosses between Danaus chrysippus from Australia and from Sierra Leone (Danaidae). Journal of the Lepidopterists' Society 27, 7377.Google Scholar
Edmunds, M. E. (1976) Larval mortality and population regulation in the butterfly Danaus chrysippus in Ghana. Zoological Journal of the Linnean Society 58, 129145.Google Scholar
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Oxford University Press, Oxford.Google Scholar
Gordon, I. J. (1984) Polymorphism of the tropical butterfly Danaus chrysippus L. in Africa. Heredity 53, 583593.Google Scholar
Hornett, A. E., Charlat, S., Duplouy, A. M. R., Davies, N., Roderick, G. K., Wedell, N. and Hurst, G. D. D. (2006) Evolution of male-killer suppression in a natural population. PLOS Biology 4 (9), e283.Google Scholar
Hurst, G. D. D. and Jiggins, F. M. (2000) Male-killing bacteria in insects: Mechanisms, incidence, and implications. Emerging Infectious Diseases 6, 329336.Google Scholar
Hurst, G. D. D. and Werren, J. H. (2001) The role of selfish genetic elements in eukaryotic evolution. Nature Reviews 2, 597606.Google Scholar
Hurst, G. D., Graf von der Schulenburg, J. H., Majerus, T. M., Bertrand, D., Zakharov, I. A., Baungaard, J. et al. . (1999) Invasion of one insect species, Adalia punctata, by two different male-killing bacteria. Insect Molecular Biology 8, 133–139.Google Scholar
Jiggins, F. M., Hurst, G. D. D., Jiggins, C. D., Schulenburg, J. H. G. V. D. and Majerus, M. E. N. (2000) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 120, 439446.Google Scholar
Jiggins, F. M., Randerson, J. P., Hurst, G. D. D. and Majerus, M. E. N. (2002) How can sex ratio disorders reach extreme prevalences? Male-killing Wolbachia are not suppressed and have near-perfect vertical transmission efficiency in Acraea encedon. Evolution; International Journal of Organic Evolution 56, 2290–2295.Google Scholar
Lushai, G., Allen, J. A., Goulson, D., Maclean, N. and Smith, D. A. S. (2005) The butterfly Danaus chrysippus (L.) in East Africa comprises polyphyletic, sympatric lineages that are, despite behavioural isolation, driven to hybridization by female-biased sex ratios. Biological Journal of the Linnean Society 86, 117–131.Google Scholar
Lushai, G., Smith, D. A. S., Gordon, I. J., Goulson, D., Allen, J. A. and Maclean, N. (2003) Incomplete sexual isolation in sympatry between subspecies of the butterfly Danaus chrysippus (L.) and the creation of a hybrid zone. Heredity 90, 236246.Google Scholar
Owen, D. F. and Chanter, D. O. (1968) Population biology of tropical African butterflies. 2. Sex ratio and polymorphism in Danaus chrysippus L. Revues Zoologiques et Botaniques Africaines 78, 81–97.Google Scholar
Smith, D. A. S. (1975a) Genetics of some polymorphic forms of the African butterfly Danaus chrysippus L. (Lepidoptera: Danaidae). Entomologica Scandinavica 6, 134144.Google Scholar
Smith, D. A. S. (1975b) All-female broods in Danaus chrysippus L. and their ecological significance. Heredity 34, 363371.Google Scholar
Smith, D. A. S. (1980) Heterosis, epistasis and linkage disequilibrium in a wild population of the polymorphic butterfly Danaus chrysippus (L.). Zoological Journal of the Linnean Society 69, 87–109.Google Scholar
Smith, D. A. S. (1998) Non-Mendelian segregation and variable penetrance of colour genes in the polymorphic butterfly Danaus chrysippus (L.). Heredity 80, 474480.Google Scholar
Smith, D. A. S., Gordon, I. J., Depew, L. A. and Owen, D. F. (1998) Genetics of the butterfly Danaus chrysippus (L.) in a broad hybrid zone, with special reference to sex ratio, polymorphism and intragenomic conflict. Biological Journal of the Linnean Society 65, 140.Google Scholar
Smith, D. A. S., Lushai, G. and Allen, J. A. (2005) A classification of Danaus butterflies (Lepidoptera: Nymphalidae) based upon data from morphology and DNA. Zoological Journal of the Linnean Society 144, 191–212.Google Scholar
Smith, D. A. S., Owen, D. F., Gordon, I. J. and Lowis, N. K. (1997) The butterfly Danaus chrysippus (L.) in East Africa: Polymorphism and morph-ratio clines within a complex, extensive and dynamic hybrid zone. Zoological Journal of the Linnean Society 120, 51–78.Google Scholar
Stouthamer, R. J., Breeuwer, A. J. and Hurst, G. D. D. (1999) Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annual Review of Microbiology 53, 71–102.Google Scholar
Talbot, G. (1943) Revisional notes on the genus Danaus Kluk (Lep. Rhop. Danaidae). Transactions of the Royal Entomological Society 93, 115148.Google Scholar
Veneti, Z., Toda, M. J. and Hurst, G. D. D. (2004) Host resistance does not explain variation in incidence of male-killing bacteria in Drosophila bifasciata. BMC Evolutionary Biology 4, 52.Google Scholar
Wada, H., Komatsu, M. and Satoh, N. (1996) Mitochondrial rDNA phylogeny of the asteroidea suggests the primitiveness of the paxillosida. Molecular Phylogenetics and Evolution 6, 97106.Google Scholar