Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-03T15:13:26.209Z Has data issue: false hasContentIssue false

Susceptibility of developmental stages of Tetranychus urticae (Acari: Tetranychidae) to infection by Beauveria bassiana and Metarhizium anisopliae (Hypocreales: Clavicipitaceae)

Published online by Cambridge University Press:  15 August 2014

David M. Bugeme
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya Faculty of Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000, Nairobi, Kenya
Markus Knapp
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
Hamadi I. Boga
Affiliation:
Faculty of Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000, Nairobi, Kenya
Sunday Ekesi
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
Nguya K. Maniania*
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
Get access

Abstract

In the present study, the susceptibility of different developmental stages (eggs, larvae, protonymphs, deutonymphs and adults) of Tetranychus urticae Koch to the entomopathogenic fungi Beauveria bassiana (Balsamo-Crivelli) Vuillemin and Metarhizium anisopliae (Metchnikoff) Sorokin was evaluated in the laboratory. At each developmental stage, four concentrations (3 × 105, 1 × 106, 3 × 106 and 1 × 107 conidia/ml) of both fungi were sprayed. Egg viability and motile-stage mortality varied among the fungal isolates and conidial concentrations. The highest conidial concentration (1 × 107 conidia/ml) significantly reduced the viability of eggs and increased the mortality of motile stages. However, deutonymphs and adults were more susceptible to fungal infection than larvae and protonymphs. The lethal concentration values to 50% (LC50) and 90% mortality (LC90) varied with the fungal isolates and developmental stages. The results show the prospects of B. bassiana and M. anisopliae for the control of T. urticae.

Type
Research Papers
Copyright
Copyright © ICIPE 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Alves, S. B., Tamai, M. A., Rossi, L. S. and Castiglioni, E. (2005) Beauveria bassiana pathogenicity to the citrus rust mite Phyllocoptruta oleivora . Experimental and Applied Acarology 37, 117122.Google Scholar
Barreto, R. S., Marques, E. J., Gondim, M. G. C. Jr and de Oliveira, J. V. (2004) Selection of Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. for the control of the mite Mononychellus tanajoa (Bondar). Scientia Agricola 61, 659664.Google Scholar
Benz, G. (1987) Environment, pp. 177214. In Epizootiology of Insect Diseases (edited by Fuxa, J. R. and Tanada, Y.). John Wiley & Sons, New York.Google Scholar
Bolland, H. R., Gutierrez, J. and Flechtmann, C. H. W. (1998) World Catalogue of the Spider Mite Family (Acari: Tetranychidae). Brill Academic Publishers, Leiden. 392 pp.Google Scholar
Bugeme, D. M., Knapp, M., Boga, H. I., Wanjoya, A. K. and Maniania, N. K. (2009) Influence of temperature on virulence of fungal isolates of Metarhizium anisopliae and Beauveria bassiana to the two-spotted spider mite Tetranychus urticae . Mycopathologia 167, 221227.CrossRefGoogle Scholar
Burgerjon, A. (1956) Pulvérisation et poudrage au laboratoire par des préparations pathogènes insecticides. Annales Epiphytes 4, 677688.Google Scholar
Carner, G. R. and Canerday, T. D. (1970) Entomophthora sp. as a factor in the regulation of the two-spotted spider mite on cotton. Journal of Economic Entomology 63, 638640.Google Scholar
Chandler, D., Davidson, G. and Jacobson, R. J. (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum . Biocontrol Science and Technology 15, 3754.CrossRefGoogle Scholar
Chandler, D., Davidson, G., Pell, J. K., Ball, B. V., Shaw, K. and Sunderland, K. D. (2000) Fungal biocontrol of Acari. Biocontrol Science and Technology 10, 357384.CrossRefGoogle Scholar
Ekesi, S. and Maniania, N. K. (2000) Susceptibility of Megalurothrips sjostedti developmental stages to Metarhizium anisopliae and the effects of infection on feeding, adult fecundity, egg fertility and longevity. Entomologia Experimentalis et Applicata 94, 229236.CrossRefGoogle Scholar
Feng, Z., Carruthers, R. I., Roberts, D. W. and Robson, D. S. (1985) Age-specific dose-mortality effects of Beauveria bassiana on the European corn borer Ostrinia nubilalis (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology 46, 259264.Google Scholar
Ferron, P. (1985) Fungal control, pp. 313346. In Comparative Insect Physiology, Biochemistry and Pharmacology (edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, Oxford.Google Scholar
Gerson, U., Smiley, R. L. and Ochoa, R. (2003) Mites (Acari) for Pest Control. Blackwell, Oxford. 560 pp.Google Scholar
Inglis, D. G., Goettel, S. M., Butt, M. T. and Strasser, H. (2001) Use of hyphomycetes fungi for managing insect pests, pp. 2369. In Fungi as Biocontrol Agents: Progress, Problems and Potential (edited by Butt, T. M., Jackson, C. and Magan, N.). CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Irigaray, F. J. S., Marco-Mancebón, V. and Pérez-Moreno, I. (2003) The entomopathogenic fungus Beauveria bassiana and its compatibility with triflumuron: effects on the twospotted spider mite Tetranychus urticae . Biological Control 26, 168173.Google Scholar
Jeppson, L. R., Keifer, H. H. and Baker, E. W. (1975) Mites Injurious to Economic Plants. University of California Press, Berkeley, Los Angeles, London. 614 pp.Google Scholar
Knapp, M., Wagener, B. and Navajas, M. (2003) Molecular discrimination between the spider mite Tetranychus evansi Baker & Pritchard, an important pest of tomatoes in southern Africa, and the closely related species T. urticae Koch (Acarina: Tetranychidae). African Entomology 11, 300304.Google Scholar
Maniania, N. K., Ekesi, S., Löhr, B. and Mwangi, F. (2001) Prospects for biological control of the western flower thrips, Frankliniella occidentalis, with the entomopathogenic fungus, Metarhizium anisopliae, on chrysanthemum. Mycopathologia 155, 229235.Google Scholar
Maniania, N. K., Bugeme, D. M., Wekesa, V. W., Delalibera, I. Jr and Knapp, M. (2008) Role of entomopathogenic fungi in the control of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae), pests of horticultural crops. Experimental and Applied Acarology 46, 259274.Google Scholar
Oduor, G. I. (1995) Abiotic factors and the epizootiology of Neozygites cf. floridana, a fungus pathogenic to the cassava green mite. PhD thesis, University of Amsterdam, Amsterdam. 101 pp. Google Scholar
Oliveira, H., Janssen, A., Pallini, A., Venzon, M., Fadini, M. and Duarte, V. (2007) A phytoseiid predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Biological Control 42, 105109.CrossRefGoogle Scholar
Samish, M., Gindin, G., Alekseev, E. and Glazer, I. (2001) Pathogenicity of entomopathogenic fungi to different developmental stages of Rhipicephalus sanguineus (Acari: Ixodidae). Journal of Parasitology 87, 13551359.Google Scholar
SAS Institute (1999–2001) SAS/STAT User's Guide, version 8.01 . SAS Institute Inc., Cary, NC.Google Scholar
Shi, W. -B. and Feng, M. -G. (2004) Lethal effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biological Control 30, 165173.Google Scholar
Smith Meyer, M. K. P. (1996) Mite Pests and Their Predators on Cultivated Plants in Southern Africa: Vegetables and Berries. Plant Protection Research Institute Handbook issue 6. ARC-Plant Protection Research Institute, Biosystematics Division, National Collection of Arachnida, Pretoria. 90 pp.Google Scholar
Stokes, M. E., Davis, C. S. and Koch, G. G. (2000) Categorical Data Analysis Using the SAS System. SAS Institute Inc., Cary, NC. 648 pp.Google Scholar
Tamai, M. A., Alves, S. B., de Almeida, J. E. M. and Faion, M. (2002) Avaliação de fungos entomopatogênicos para o controle de Tetranychus urticae Koch (Acari: Tetranychidae). Arquivos do Instituto Biologico 69, 7784.Google Scholar
Varela, A. M., Seif, A. A. and Löhr, B. (2003) A Guide to IPM in Tomato Production in Eastern and Southern Africa. ICIPE Science Press, Nairobi. 128 pp.Google Scholar
Vey, A. and Fargues, J. (1977) Histological and ultrastructural studies of Beauveria bassiana infection in Leptinotarsa decemlineata larvae during ecdysis. Journal of Invertebrate Pathology 30, 207215.Google Scholar
Wekesa, V. W., Knapp, M., Maniania, N. K. and Boga, H. I. (2006) Effects of Beauveria bassiana and Metarhizium anisopliae on mortality, fecundity and egg fertility of Tetranychus evansi . Journal of Applied Entomology 130, 155159.CrossRefGoogle Scholar
Wekesa, V. W., Maniania, N. K., Knapp, M. and Boga, H. I. (2005) Pathogenicity of Beauveria bassiana and Metarhizium anisopliae to the tobacco spider mite Tetranychus evansi . Experimental and Applied Acarology 36, 4150.CrossRefGoogle Scholar
Zhang, Z.-Q. (2003) Mites of Greenhouses: Identification, Biology and Control. CABI Publishing, Wallingford, UK. 240 pp.CrossRefGoogle Scholar