Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T07:06:06.965Z Has data issue: false hasContentIssue false

Biotypes of insect pests of agricultural crops

Published online by Cambridge University Press:  19 September 2011

R. C. Saxena
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
A. A. Barrion
Affiliation:
The International Rice Research Institute (IRRI), P.O. Box 933, Manila, Philippines
Get access

Abstract

Biotypes refer to the infraspecific category of insect populations with similar genotypes for biological attributes. They have been encountered mostly in association with cultivation of resistant crop cultivars and in well-studied cases a gene-for-gene relationship between pest virulence and host plant resistance has been documented. To date, biotypes have been reported to occur in 36 crop pest species belonging to 17 arthropod families in six Orders. Almost 50% of these pest species with known biotypes are aphids. Knowledge of occurrence of insect biotypes is crucial to the success of crop improvement programmes aiming to incorporate pest resistance. Biotypes represent evolutionary transients in the process of speciation and develop through natural selection acting upon genetic variations within the pest populations. To slow down the process of biotype selection, crop cultivars with broad genetic bases are needed.

Résumé

Les biotypes caractérisent des catégories intraspécifiques de populations d'insectes qui ont des génotypes similaires pour des caractéristiques biologiques données. Ils se rencontrent le plus souvent en association avec la culture de variétés résistantes et dans des cas spécifiques bien étudiés une relation des gêne à gêne entre la virulence des ravageurs et la résistance de la plante hote ont été publiées. Jusqu'à ce jour, il a été décrit des biotypes pour 36 espèces de ravageurs appartenant à 17 familles d'arthropodes réparties dans 6 ordres. Près de 50% de ces espèces de ravageurs dont les biotypes sont connus sont des aphides. La connaissance de l'apparition de ces biotypes est cruciale pour le succès des programmes d'amélioration des cultures visant à incorporer la résistance aux ravageurs. Les biotypes représentent une étape de transition dans le processus de spéciation et se développe à travers la sélection naturelle qui agit sur les variations génétiques présentes dans les populations de ravageurs. Afin de réduire le processus de sélection des biotypes, des cultivars possédant des large bases génétiques pour la résistance sont nécéssaires.

Type
Symposium II: Biotypes, Polymorphism and Co-evolution in Tropical Insects
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, R. E., Heyne, E. G., Jones, E. T. and Johnston, C. O. (1959) Genetic analysis of ten sources of Hessian fly resistance, their interrelationships and association with leaf rust reaction in wheat. Kansas Agric. Expt. Sta. Tech. Bull. 104.Google Scholar
Barrion, A. A. (1985) Selection on resistant rice varieties and genetics of rice-infesting biotypes of brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Ph.D. thesis, University of the Philippines at Los Baños, Laguna, Philippines.Google Scholar
Boller, E. F. and Bush, G. L. (1974) Evidence for genetic variation in populations of European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae) based on physiological parameters and hybridization experiments. Entomologia exp. appl. 17, 279293.CrossRefGoogle Scholar
Boller, E. F., Russ, K., Vallo, V. and Bush, G. L. (1976) Incompatible races of European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae) their origin and potential use in biological control. Entomologia exp. appl. 20, 237247.CrossRefGoogle Scholar
Bush, G. L. (1974) The mechanism of sympatric host race formation in the tree fruit flies (Tephritidae). In Genetic Mechanism of Speciation in Insects (Edited by White, M. J.), pp. 323. Australia and New Zealand Book Co., Sydney.Google Scholar
Caldwell, R. M., Cartwright, W. B. and Compton, L. E. (1946) Inheritance of Hessian fly resistance derived from W38 and durum P.I. 94587. Am. Soc. Agron. 38, 398409.CrossRefGoogle Scholar
Cholodkovsky, N. (1908) Zur frage iiber die biologischen arten. Biol. Centralbl. 28, 169182.Google Scholar
Diehl, S. R. and Bush, G. L. (1984) An evolutionary and applied perspective of insect biotypes. A. Rev. Ent. 29, 471504.CrossRefGoogle Scholar
Eastop, V. F. (1973) Biotypes of aphids. Bull. ent. soc. N. Z. 2, 4057.Google Scholar
Fargo, W. S., Inayatullah, C., Webster, J. A. and Holbert, D. (1986) Morphometric variation within apterous females of Schizaphis graminum biotypes. Res. Popul. Ecol. (in Press).CrossRefGoogle Scholar
Foster, J. E. and Gallun, R. L. (1972) Populations of the eastern races of the Hessian fly controlled by release of the dominant avirulent Great Plains race. Ann. ent. Soc. Am. 65, 750754.CrossRefGoogle Scholar
Foster, J. E. and Gallun, R. L. (1973) Controlling race B Hessian fly in field cages with the Great Plains race. Ann. ent. Soc. Am. 66, 567570.CrossRefGoogle Scholar
Gallun, R. L. (1972) Genetic interrelationship between host and organism and influence on resistance. In Resistance to Plant Pathogens and Insects, pp. 395402.Google Scholar
Gallun, R. L. (1972) Genetic interrelationship between host plants and insects. J. Environ. Qual. 1, 691695.CrossRefGoogle Scholar
Gallun, R. L., Deay, H. O. and Cartwright, W. B. (1961) Four races of Hessian fly selected and developed from an Indiana population. Purdue Univ. Res. Bull. 732, 18.Google Scholar
Gallun, R. L. and Khush, G. S. (1980) Genetic factors affecting expression and stability of resistance. In Breeding Plant Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.). John Wiley, New York.Google Scholar
Gonzalez, D., Gordh, G., Thompson, S. N. and Adler, J. (1979) Biotype discrimination and its importance to biological control. In Genetics in Relation to Insect Management (Edited by Hoy, M. A. and McKelvey, J. J. Jr), Rockefeller Foundation, New York.Google Scholar
Harris, M. K. (1975) Allopatric resistance: Searching for sources of insect resistance for use in agriculture. Environ. Ent. 4, 661669.CrossRefGoogle Scholar
Hatchett, J. H. (1969) Race E: sixth race of the Hessian fly, Mayetiola destructor, discovered in Georgia wheat fields. Ann. ent. Soc. Am. 62, 677678.CrossRefGoogle Scholar
Hatchett, J. H. and Gallun, R. L. (1967) Genetic control of the Hessian fly. Proc. North Cent. Branch ent. soc. Am. 22, 100101.Google Scholar
Huxley, J. (1942) Evolution: The Modern Synthesis. Geo. Allen and Unwin, London.Google Scholar
Inayatullah, C., Webster, J. A. and Fargo, W. S. (1986) Morphometric variation in the alates of greenbug (Homoptera: Aphidae) biotypes. Ann. Ent. Soc. Am. 79, (in Press).Google Scholar
Jermy, T. (1977) Insect-host plant relationship-coevolution or sequential evolution. Rev. Appl. Ent. 65, 1140.Google Scholar
Maxwell, F. G. and Jennings, P. R. (1980) Breeding Plants Resistant to Insects. John Wiley, New York.Google Scholar
Mayr, E. (1942) Systematics and the Origin of Species. Columbia Univ. Press, New York.Google Scholar
Nielson, M. W. and Don, H. (1974) A new virulent biotype of the spotted alfalfa aphid in Arizona. J. econ. Ent. 67, 6466.CrossRefGoogle Scholar
Nielson, M. W., Schonhorst, M. H., Don, H., Lehma, W. F. and Marble, V. L. (1971) Resistance in alfalfa to four biotypes of the spotted alfalfa aphids. J. econ. Ent. 64, 506510.CrossRefGoogle Scholar
Noble, W. B. and Suneson, C. A. (1943) Differentiation of the two genetic factors for resistance to the Hessian fly in Dawson wheat. J. Agric. Res. 67, 2732.Google Scholar
Painter, R. H. (1951) Insect Resistance in Crop Plants. Macmillan, New York.CrossRefGoogle Scholar
Painter, R. H., Salmon, J. C. and Parker, J. H. (1931) Resistance of varieties of winter wheat to Hessian fly, Phytophaga destructor (Say). Kan. State Agr. Exp. Stn. Tech. Bull. 27, 58.Google Scholar
Pathak, M. D. (1970) Genetics of plants in pest management. In Concepts of Pest Management (Edited by Rabb, R. L. and Guthrie, F. E.), pp. 6181. N. C. State Univ., Raleigh.Google Scholar
Pathak, M. D. (1975) Utilization of insect-plant interaction in pest control. In Insects, Science and Society (Edited by Pimentel, D.) Academic Press, London.Google Scholar
Pathak, M. D. and Saxena, R. C. (1981) Insect resistance in crop plants. Commentaries in Plant Science 2, 6181.CrossRefGoogle Scholar
Patterson, F. L. and Gallun, R. L. (1973) Inheritance of resistance of Seneca wheat to race E of Hessian fly. 4th Int. Wheat Genet. Symp., Mo. Agric. Exp. Stn., Columbia Mo. pp. 445449.Google Scholar
Russel, G. E. (1978) Plant Breeding for Pest and Disease Resistance. Butterworths, Boston.Google Scholar
Saxena, R. C. and Barrion, A. A. (1985) Biotypes of the brown planthopper Nilaparvata lugens (Stål) and strategies in deployment of host plant resistance. Insect Sci. Applic. 6, 271289.Google Scholar
Saxena, R. C. and Rueda, L. M. (1982) Morphological variation among three biotypes of the brown planthopper, Nilaparvata lugens, in the Philippines. Insect Sci. Applic. 3, 193210.Google Scholar
Shands, R. G. and Cartwright, W. B. (1953) A fifth gene conditioning Hessian fly response in common wheat. J. Am. Soc. Agron. 45, 302307.CrossRefGoogle Scholar
Smith, H. S. (1941) Racial segregation in insect populations and its significance in applied entomology. J. econ. Ent. 34, 113.CrossRefGoogle Scholar
Starks, K. J., Burton, R. L. and Merkle, O. G. (1983) Greenbugs (Homoptera: Aphididae) plant resistance in small grains and sorghum to biotype E. J. econ. Ent. 76, 877880.CrossRefGoogle Scholar
Suneson, C. A. and Noble, W. B. (1950) Further differentiation of genetic factor in wheats for resistance to the Hessian fly. USDA Tech. Bull. 1004, 8.Google Scholar
Thorpe, W. H. (1930) Biological races in insects and allied groups. Biol. Rev. 5, 177212.CrossRefGoogle Scholar
Thorpe, W. H. (1940) Ecology and the future of systematics. In The New Systematics (Edited by Huxley, J. S.), pp. 341364. Oxford Univ. Press, New York.Google Scholar
Walsh, B. D. (1864) On phytophagic varieties and phytophagic species, with remarks on the unity of coloration in insects. Proc. ent. Soc. Philadelphia 3, 403430.Google Scholar
Wootipreecha, S. (1971) Studies of genetic synthesis of new races of Hessian fly, Mayetiola destructor (Say). Ph.D. thesis Purdue Univ., W. Lafayette In.Google Scholar