Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T00:51:58.879Z Has data issue: false hasContentIssue false

Biotypes of the brown planthopper Nilaparvata lugens (Stål) and strategies in deployment of host plant resistance

Published online by Cambridge University Press:  19 September 2011

R. C. Saxena
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
A. A. Barrion
Affiliation:
The International Rice Research Institute (IRRI), P.O. Box 933, Manila, Philippines
Get access

Abstract

Resistant rice varieties have proved to be highly effective against the brown planthopper Nilaparvata lugens (Stål), but their long-term stability is threatened because of the evolution of prolific biotypes. At present, identification of biotypes is based principally on the differential reactions of host rice varieties to pest in greenhouse screenings and in field plantings of test nurseries at many locations. So far, three N. lugens biotypes that attack different rice varieties have been identified in the Philippines. Biotype 1 can survive on and damage only those varieties that do not carry any genes for resistance. Biotype 2 can thrive on varieties carrying Bph 1 resistance gene and on those susceptible to biotype 1. Biotype 3 can infest and destroy varieties having bph 2 resistance gene and those susceptible to biotype 1. However, none of these biotypes is capable of damaging varieties with Bph 3 and bph 4 genes for resistance, and the variety Ptb 33 carrying two unidentified genes is resistant to almost all known biotypes. Recently, a population of N. lugens was found thriving on the common weed grass Leersia hexandra Swartz on the IRRI farm and in some locations in Luzon, Philippines. This biotype does not survive on rice.

Several varieties which are resistant in the Philippines are susceptible in India and Sri Lanka because the South Asian biotypes of N. lugens are more virulent than the Southeast Asian biotypes. To monitor the pest biotypes in different geographical regions and to identify new sources of resistance, an International Rice Brown Planthopper Nursery (IRBPHN) has been established in many cooperating Asian countries.

Biotypes can also be differentiated by studying their behavioural and physiological responses to plants of known genotypes. Distinctive differences can be observed in insect feeding, growth, longevity, fecundity, oviposition and population increase on differential varieties and relative susceptibility or tolerance for hosts' allelochemics. Recent investigations of the existence of subtle morphological, cytological, and electrophoretic differences among N. lugens biotypes and results of hybridization experiments strongly complement other methods of biotype identification.

The evolution of biotypes is a complex process that is governed by the interactions of the genetic and other biological characteristics of the pest populations and the genetic makeup of cultivated varieties. While the strategy of sequential release of varieties with major resistance genes has been fairly successful, the monogenic nature of those varieties makes them vulnerable to the development of virulent pest biotypes. Therefore, present breeding endeavors envisage use of both major and minor resistance genes for effective pest suppression.

Résumé

La résistance variétale du riz contre la cicadelle brune Nilaparvata lugens (Stål) est très efficace, mais sa stabilité à long terme est menacée du fait de l'évolution rapide de ce parasite prolifique. L'identification de biotypes est fondée principalement sur les réactions d'un matériel végétal dit“differentiel” à l'infestation par le parasite, dans les serres de criblage ou dans des cultures en champs en de nombreux sites. Jusqu' à présent, on a pu identifier trois biotypes de N. lugens aux Philippines. Le biotype 1 ne peut survivre et causer des dégats que sur les variétés sans gène de résistance. En comparaison, le biotype 2 peut aussi attaquer les variétés possédant le géne de résistance Bph 1 et le biotype 3 peut aussi attaquer les variétés portant le gène de résistance bph 2. Les variétés porteuses des gènes de résistance Bph 3 et bph 4 sont resistantes à ces trois biotypes, et la variété Ptb 33, porteuse de 2 gènes de résistance non identifiés, est résistante à presque tous les biotypes connus. Récemment, une population de N. lugens se développant sur l'adventice Leersia hexandra a été observée à la ferme de l'IRRI et dans d'autres sites de Luzon, aux Philippines. Ce biotype ne survit pas le riz.

Plusieurs variétés résistantes aux Philippines sont sensibles en Inde et à Sri Lanka; les biotypes d'Asie du Sud sont plus virulents que les biotypes d'Asie du Sud-Est. Un réseau international (International Rice Brown Planthopper Nursery—IRBPHN), auquel participent de nombreux pays d'Asie, a été mis sur pied pour faciliter la reconnaissance des biotypes ainsi que l'identification de nouvelles sources de résistance végétale.

Les biotypes peuvent aussi être différenciés grâce à leurs réponses comportementale et physiologique a différents génotypes végétaux. Des différences sont observées quant à la consommation, la croissance, la longévité, la fécondité, l'oviposition et la croissance de la population sur les variétés différentielles, et à la sensibilité relative, ou la tolérance, aux substances allélochimiques produites par les plantes nôtes. Certains aspects de la morphologie, la cytologie ou la composition isoenzymatique des biotypes ainsi que les résultats d'hybridations entre biotypes se sont récemment ajoutés aux autres méthodes d'identification des biotypes.

L'évolution des biotypes est un processus complexe déterminé par les interactions entre les caractéristiques ainsi que d'autres caractéristiques biologiques des populations du parasite et la constitution génétique des variétés cultivées. Alors que la stratégie de production périodique de variétés porteuses de gènes de résistance majeurs a donné des résultats assez satisfaisants, il reste que la nature oligogénique de la résistance de ces variétés les rend vulnérables au développement de biotypes virulents. Aussi, les efforts actuels des sélectionneurs visent à cumuler génes majeurs et génes mineurs pour une lutte efficace contre ce parasite.

Type
Section II: Factors influencing the expression and stability of host plant resistance
Copyright
Copyright © ICIPE 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrion, A. A. and Saxena, R. C. (1984a) Cytological variations among four biotypes of the brown planthopper Nilaparvata lugens (Stål) in the Philippines. Paper presented at the 15th Annual Conference of the Pest Control Council of the Philippines, held at Los Baños, Laguna, 21–23 May 1984 (abstr.).Google Scholar
Barrion, A. A. and Saxena, R. C. (1984b) Genetics of virulence in three biotypes of brown planthopper, Nilaparvata lugens (Stål). Paper presented at the Department of Entomology Seminar, International Rice Research Institute, Los Baños, Laguna, Philippines.Google Scholar
Bey-Bienko, G. Y. (1958) The principle of change of stations and the problem of initial divergence of species. In Proc. Int. Cong. Zool. Section II, paper no. 31, pp. 13.Google Scholar
Browning, J. S. and Frey, K. J. (1969) Multiline varieties as a means of disease control. A. Rev. Phytopath. 7, 355382.CrossRefGoogle Scholar
Bush, G. L. (1974) The mechanism of sympatric host race formation in the tree fruit flies (Tephritidae). In Genetic Mechanisms of Speciation in Insects (Edited by White, M. J.), pp. 323. Australia and New Zealand Book Co., Sydney.Google Scholar
Chang, T. T. (1984) Conservation of rice genetic resources: luxury or necessity? Science 224, 251256.CrossRefGoogle ScholarPubMed
Cheng, C. H. and Chang, W. L. (1979) Studies on varietal resistance to the brown planthopper in Taiwan. In Brown Planthopper: Threat to Rice Production in Asia, pp. 251271. International Rice Research Institute, Los Baños, Philippines.Google Scholar
Claridge, M. F. and Den Hollander, J. (1980) The biotypes of the rice brown planthopper, Nilaparvata lugens. Entomologia exp. appl. 27, 2330.CrossRefGoogle Scholar
Claridge, M. F. and Den Hollander, J. (1983) The biotype concept and its application to insect pests of agriculture. Crop Prot. 2, 8595.CrossRefGoogle Scholar
Claridge, M. F., Den Hollander, J. and Haslam, D. (1984) The significance of morphometric and fecundity differences between the “biotypes” of the brown planthopper, Nilaparvata lugens (Stål). Entomologia exp. appl. 36, 107114.CrossRefGoogle Scholar
Den Hollander, J. and Pathak, P. K. (1981) The genetics of the “biotypes” of the rice brown planthopper, Nilaparvata lugens. Entomologia exp. appl. 29, 7686.CrossRefGoogle Scholar
Diehl, S. R. and Bush, G. L. (1984) An evolutionary and applied perspective of insect biotypes. A. Rev. Ent. 29, 471504.CrossRefGoogle Scholar
Dyck, V. A. and Thomas, B. (1979) The brown planthopper problem. In Brown Planthopper: Threat to Rice Production in Asia, pp. 317. International Rice Research Institute, Los Baños, Laguna, Philippines.Google Scholar
Gallun, R. L. and Khush, G. S. (1980) Genetic factors affecting expression and stability of resistance. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 6385. Wiley, New York.Google Scholar
Harahap, Z. (1979) Breeding for resistance to brown planthopper and grassy stunt virus in Indonesia. In Brown Planthopper: Threat to Rice Production in Asia, pp. 201208. International Rice Research Institute, Los Baños, Laguna, Philippines.Google Scholar
Harris, M. K. (1975) Allopatric resistance: searching for sources of insect resistance for use in agriculture. Environ. Ent. 4, 661669.CrossRefGoogle Scholar
Heinrichs, E. A. and Medrano, F. G. (1984) Leersia hexandra, a weed host of the brown planthopper, Nilaparvata lugens (Stål). Crop Prot. 3, 7785.CrossRefGoogle Scholar
Huynh, N. V. (1977) New biotype of brown planthopper in the Mekong Delta of Vietnam. Int. Rice Res. Newsl. 2, 10.Google Scholar
IRRI (International Rice Research Institute) (1968) Varietal resistance to the brown planthoppers and rice green leafhoppers. Screening for brown planthopper resistance. IRRI Ann. Rep. for 1967, pp. 197199.Google Scholar
IRRI (International Rice Research Institute) (1970) Resistance of IR532 lines. IRRI Ann. Rep for 1969, pp. 222223.Google Scholar
IRRI (International Rice Research Institute) (1972) Resistance of Mudgo to brown planthopper. IRRI Ann. Rep. for 1971, p. 121.Google Scholar
IRRI (International Rice Research Institute) (1976) Selection and studies on sources of resistance: Biotypes. IRRI Ann. Rep. for 1975, pp. 107108.Google Scholar
IRRI (International Rice Research Institute) (1978) Biotype studies: Genetics of BPH biotypes. IRRI Ann. Rep. for 1977, p. 68.Google Scholar
IRRI (International Rice Research Institute) (1979) Nature and causes of resistance: Biochemical bases of resistance. IRRI Ann. Rep. for 1978, pp. 6869.Google Scholar
IRRI (International Rice Research Institute) (1982) Levels of resistance of rice varieties to the biotypes of the brown planthopper, Nilaparvata lugens, in South and Southeast Asia. IRRI Res. Paper Ser. No. 72.Google Scholar
IRRI (International Rice Research Institute) (1983) One step ahead. IRRI Research Highlights for 1982, pp. 56.Google Scholar
Khush, G. S. (1979) Genetics and breeding for resistance to the brown planthopper. In Brown Planthopper: Threat to Rice Production in Asia, pp. 321332. International Rice Research Institute, Los Baños, Laguna, Philippines.Google Scholar
Ling, K. C. (1967) Transmission of viruses in Southeast Asia. In The Virus Diseases of the Rice Plant, pp. 139153. John Hopkins, Baltimore, U.S.A.Google Scholar
Ling, K. C., Tiongco, E. R. and Aguiero, V. M. (1978) Rice ragged stunt, a new virus disease. Plant Dis. Rep. 62, 701705.Google Scholar
Liquido, N. J. (1978) Morphology, cytology, and breeding behavior of Nilaparvata lugens (Stål) (Delphacidae: Homoptera). Unpublished MS thesis, University of the Philippines at Los Baños, Laguna, Philippines.Google Scholar
Mayr, E. (1942) Systematics and the Origin of Species from the Viewpoint of a Zoologist. Columbia University, New York.Google Scholar
Medrano, F. G. and Heinrichs, E. A. (1984) Varietal resistance to the brown planthopper, Nilaparvata lugens (Stål) in the world collection of rice. Paper presented at the 15th Annual Conference of the Pest Control Council of the Philippines, held at Los Baños, Laguna, 21–23 May 1984.Google Scholar
Nielson, M. W. and Don, H. (1974) A new virulent biotype of the spotted alfalfa aphid in Arizona. J. econ. Ent. 67, 6466.CrossRefGoogle Scholar
Nielson, M. W. and Lehman, W. F. (1980) Breeding approaches in alfalfa. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 277311. Wiley, New York.Google Scholar
Oka, I. N. (1978) Quick method for identifying brown planthopper biotypes in the field. Int. Rice Res. Newsl. 3, 1112.Google Scholar
Okamoto, H. (1924) Jassidae and Fulgoridae injurious to the rice plant in Korea. Rep. Agric. exp. Stn Chosen 12, 137.Google Scholar
Paguia, P., Pathak, M. D. and Heinrichs, E. A. (1980) Honeydew excretion measurement techniques for determining differential feeding activity of biotypes of Nilaparvata lugens on rice varieties. J. econ. Ent. 73, 3540.CrossRefGoogle Scholar
Paik, W. H. (1977) Historical review of the occurrence of the brown planthopper in Korea. In The Rice Brown Planthopper, pp. 230247. Food and Fertilizer Technology Center for the Asian and Pacific Region, Taiwan, Republic of China.Google Scholar
Panda, N. and Heinrichs, E. A. (1983) Levels of tolerance and antibiosis in rice varieties having moderate resistance to the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Environ. Ent. 12, 12041214.CrossRefGoogle Scholar
Pathak, M. D. (1975) Utilization of insect-plant interactions in pest control. In Insect, Science and Society (Edited by Pimentel, D.), pp. 121148. Academic Press, London.CrossRefGoogle Scholar
Pathak, M. D. and Khush, G. S. (1979) Studies of varietal resistance in rice to the brown planthopper at IRRI. In Brown Planthopper: Threat to Rice Production in Asia, pp. 287301. International Rice Research Institute, Los Baños, Laguna, Philippines.Google Scholar
Pathak, M. D. and Saxena, R. C. (1980) Breeding approaches in rice. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 422456. Wiley, New York.Google Scholar
Pathak, M. D. and Saxena, R. C. (1981) Insect resistance in crop plants. In Commentaries in Plant Science (Edited by Smith, H.), pp. 6181. Pergamon Press, Oxford.CrossRefGoogle Scholar
Pathak, P. K. and Heinrichs, E. A. (1982) Selection of biotype populations 2 and 3 of Nilaparvata lugens by exposure to resistant varieties. Environ. Ent. 11, 8590.CrossRefGoogle Scholar
Pathak, M. D., Cheng, C. H. and Fortuno, M. E. (1969) Resistance to Nephotettix cincticeps and Nilaparvata lugens insect pests of rice. Nature 223, 502504.CrossRefGoogle Scholar
Pathak, P. K., Saxena, R. C. and Heinrichs, E. A. (1982) Parafilm sachet for measuring honeydew excretion by Nilaparvata lugens on rice. J. econ. Ent. 75, 194195.CrossRefGoogle Scholar
Rothfels, K. H. (1979) Cytotaxonomy of black flies (Simuliidae). A. Rev. Ent. 24, 507539.CrossRefGoogle Scholar
Saxena, K. N. (1969) Patterns of insect-plant relationships determining susceptibility or resistance of different plants to an insect. Entomologia exp. appl. 12, 751766.CrossRefGoogle Scholar
Saxena, R. C. and Pathak, M. D. (1977) Factors affecting resistance of rice varieties to the brown planthopper, Nilaparvata lugens (Stål). Paper presented at the 9th Annual Conference of the Pest Control Council of the Philippines, held at Bacolod City, 18–20 May 1977.Google Scholar
Saxena, R. C. and Rueda, L. M. (1982) Morphological variations among three biotypes of the brown planthopper Nilaparvata lugens in the Philippines. Insect Sci. Applic. 3, 193210.Google Scholar
Saxena, R. C. and Barrion, A. A. (1982a) A technique for preparation of brown planthopper chromosomes. Int. Rice Res. Newsl. 7, 89.Google Scholar
Saxena, R. C. and Barrion, A. A. (1982b) Cytogenetic variation in brown planthopper biotypes 1 and 2. Int. Rice Res. Newsl. 7, 5.Google Scholar
Saxena, R. C. and Barrion, A. A. (1983a) Biotypes of the brown planthopper, Nilaparvata lugens (Stål). Korean J. Plant Prot. 22, 5266.Google Scholar
Saxena, R. C. and Barrion, A. A. (1983b) Cytological variations among brown planthopper biotypes 1, 2, and 3. Int. Rice Res. Newsl. 8, 1415.Google Scholar
Saxena, R. C. and Barrion, A. A. (1984) Comparative cytology of brown planthopper populations infesting Leersia hexandra Swartz and rice in the Philippines. Int. Rice Res. Newsl. 9, 2324.Google Scholar
Saxena, R. C. and Mujer, C. V. (1984a) Detection of enzyme polymorphism among populations of brown planthopper (BPH) biotypes using starch gel electrophoresis. Int. Rice Res. Newsl. 9, 1819.Google Scholar
Saxena, R. C. and Mujer, C. V. (1984b) Enzyme polymorphism in rice brown planthopper (BPH). Int. Rice Res. Newsl. 9, 1819.Google Scholar
Saxena, R. C., Velasco, M. V. and Barrion, A. A. (1983) Morphological variations between brown planthopper biotypes on Leersia hexandra and rice in the Philippines. Int. Rice Res. Newsl. 8, 1.Google Scholar
Saxena, R. C., Velasco, M. V. and Barrion, A. A. (1984) Intraspecific hybridization between rice- and grass-infesting brown planthopper, Nilaparvata lugens (Stål). Paper presented at the 15th Annual Conference of the Pest Control Council of the Philippines, held at Los Baños, 21–23 May 1984 (abstr.).Google Scholar
Seshu, D. V. and Kauffman, H. E. (1980) Differential response of rice varieties to the brown planthopper in international screening tests. IRRI Res. Paper Ser. No. 52.Google Scholar
Smith, S. G. (1960) Cytogenetics of insects. A. Rev. Ent. 5, 6984.CrossRefGoogle Scholar
Sogawa, K. (1978a) Quantitative morphological variations among biotypes of the brown planthopper. Int. Rice Res. Newsl. 3, 910.Google Scholar
Sogawa, K. (1978b) Electrophoretic variations in esterase among biotypes of the brown planthopper. Int. Rice Res. Newsl. 3, 89.Google Scholar
Sogawa, K. (1981) Hybridization experiments on the three biotypes of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae) at IRRI, Philippines. Appl. ent. Zool. 16, 193199.CrossRefGoogle Scholar
Sogawa, K. (1982) The rice brown planthopper: feeding physiology and hostplant interactions. A. Rev. Ent. 27, 4973.CrossRefGoogle Scholar
Sogawa, K., Djatnika, K. and Bhagiawati, A. H. (1984) Characterization of the brown planthopper population on IR42 in North Sumatra, Indonesia. Int. Rice Res. Newsl. 9, 25.Google Scholar
Suenaga, H. and Nakatsuka, K. (1958) Review on the forecasting of leaf- and planthoppers infesting rice. Spec. Rep. Forecasting Dis. Insects. Japanese Ministry of Agriculture For. No. 1.Google Scholar
Varca, A. S. and Feuer, R. (1976) The brown planthopper and its biotypes in the Philippines. Plant Prot. News 5, 3841.Google Scholar
Velusamy, R. and Chelliah, S. (1984) Brown planthopper biotypes in India. Int. Rice Res. Newsl. 9, 19.Google Scholar
Verma, S. K., Pathak, P. K., Singh, B. N. and Lai, M. N. (1979) Indian biotypes of the brown planthopper. Int. Rice Res. Newsl. 4, 7.Google Scholar
White, M. J. D. (1954) Animal Cytology and Evolution. Cambridge University Press, Cambridge.Google Scholar
White, M. J. D. (1978) Modes of Speciation. W. H. Freeman, San Francisco.Google Scholar