Skip to main content
×
×
Home

Population Genetics and Seed Set in Feral, Ornamental Miscanthus sacchariflorus

  • Evans Mutegi (a1), Allison A. Snow (a1), Catherine L. Bonin (a2), Emily A. Heaton (a2), Hsiaochi Chang (a1), Carole J. Gernes (a3), Destiny J. Palik (a1) and Maria N. Miriti (a1)...
Abstract

Ornamental grasses may become invasive weeds depending on their ability to naturalize and outcompete other species. Miscanthus sacchariflorus (Maxim) Franch. (Amur silvergrass) is a tall, self-incompatible, nonnative grass that has become naturalized in eastern North America, forming monospecific stands and raising concerns about its potential invasiveness. To understand the extent of clonal and sexual reproduction in feral populations, we examined their population genetic structure, seed production, and ploidy. We surveyed 21 populations in Iowa and Minnesota using eight polymorphic microsatellite markers. Only 34 multilocus genotypes (MLGs) were detected from a total of 390 samples. All of the study populations had more than one MLG, thereby allowing cross-pollination with near neighbors, but most were dominated by one or a few MLGs. Low genetic divergence suggests that all populations may have originated from similar cultivars. Cluster analysis showed that the six populations from Minnesota were extremely similar to each other, whereas the 15 populations from Iowa were somewhat more diverse. Seed production was quantified for 20 populations and ploidy for 11 populations. Average seed production was very low (< 0.30 seeds per panicle), although most populations did produce seeds. Because the populations were diploid (2x), they also may have the potential to hybridize with ornamental varieties of Miscanthus sinensis (Chinese silvergrass; eulaliagrass), a diploid close relative. Clonal growth, self-incompatibility, and spatial isolation of compatible clones may contribute to pollen-limited seed set in these populations. Low seed set may affect the rate of spread of feral M. sacchariflorus, which appears to disperse vegetatively as well as by seed. Although this species is not widely viewed as invasive, it is worth monitoring as a species that may become more widespread in the future.

Copyright
Corresponding author
Corresponding author's E-mail: snow.1@osu.edu
References
Hide All
Adugna, A, Sweeney, PM, Snow, AA (2011) Optimization of high throughput, cost effective, and all-stage DNA extraction protocol for sorghum ( Sorghum bicolor). J Agric Sci Technol 5:243250
Ahmad, R, Liow, P-S, Spencer, DF, Jasieniuk, M (2008) Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquat Bot 88:113120
Anderson, EK, Hager, AG, Lee, D, Allen, DJ, Voigt, TB (2015) Responses of seeded Miscanthus × giganteus to PRE and POST herbicides. Weed Technol 29:274283
Arnaud-Haond, S, Belkhir, K (2007) GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:1517
Arnaud-Haond, S, Duarte, CM, Alberto, F, Serrao, EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:51155139
Balloux, F, Lehmann, L, De Meeus, T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164:16351644
Bonin, CL, Heaton, EA, Barb, J (2014) Miscanthus sacchariflorus—biofuel parent or new weed? Glob Change Biol Bioenergy 6:629636
Chae, WB, Hong, SJ, Gifford, JM, Rayburn, AL, Sacks, EJ, Juvik, JA (2014) Plant morphology, genome size, and SSR markers differentiate five distinct taxonomic groups among accessions in the genus Miscanthus . Glob Change Biol Bioenergy 6:646660
Clark, LV, Stewart, JR, Nishiwaki, A, Toma, Y, Kueldsens, JB, Jorgensens, U, Zhao, H, Peng, J, Yoo, JH, Kweon, H, Yu, CY, Yamada, T, Sacks, EJ (2015) Genetic structure of Miscanthus sinensis and M. sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression. J Exp Bot DOI: 10.1093/jxb/eru511
Culley, TM, Hardiman, NA (2007) The beginning of a new invasive plant: a history of the ornamental Callery pear in the United States. BioScience 57:956964
D'Antonio, C, Vitousek, P (1992) Biological invasions by exotic grasses, the grass fire cycle, and global change. Annu Rev Ecol Syst 23:63879
DeWoody, JA, Schupp, J, Kenefic, L, Busch, J, Murfitt, L, Keim, P (2004) Universal method for producing ROX-labeled size standards suitable for automated genotyping. BioTechniques 37:348
Dorken, ME, Eckert, GC (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339350
EDDMapS (2016) Early Detection and Distribution Mapping System. University of Georgia Center for Invasive Species and Ecosystem Health. http://www.eddmaps.org. Accessed May 2016
Galbraith, DW, Harkins, KR, Maddox, JM, Ayres, NM, Sharma, DP, Firoozabady, E (1983) Rapid flow cytometric analysis of the cell-cycle in intact plant-tissues. Science 220:10491051
Gitzendanner, MA, Weekley, CW, Germain-Aubrey, CC, Soltis, DE, Soltis, PS (2012) Microsatellite evidence for high clonality and limited genetic diversity in Ziziphus celata (Rhamnaceae), an endangered, self-incompatible shrub endemic to the Lake Wales Ridge, Florida, USA. Conserv Genet 13:223234
Glowacka, K, Clark, LV, Adhikari, S, Peng, J, Stewart, JR, Nishiwaki, A, Yamada, T, Jorgensen, U, Hodkinson, TR, Gifford, J, Juvik, JA, Sacks, EJ (2015) Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. Glob Change Biol Bioenergy 7:386404
Gustafson, DJ, Giunta, AP Jr, Echt, CS (2013) Extensive clonal growth and biased sex ratios of an endangered dioecious shrub, Lindera melissifolia (Walt) Blume (Lauraceae). J Torrey Bot Soc 140:133144
Hager, HA, Quinn, LD, Barney, JN, Voigt, TB, Newman, JA (2015a) Germination and establishment of bioenergy grasses outside cultivation: a multi-region seed addition experiment. Plant Ecol 216:13851399
Hager, HA, Rupert, R, Quinn, LD, Newmann, JA (2015b) Escaped Miscanthus sacchariflorus reduces the richness and diversity of vegetation and the soil seed bank. Biol Invasions 17:18331847
Hager, HA, Sinasac, SE, Gedakif, Z, Newman, JA (2014) Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions. PLOS ONE 9(6):e100032 doi:10.1371/journal.pone.0100032
Hardiman, NA, Culley, TM (2010) Reproductive success of cultivated Pyrus calleryana (Rosaceae) and establishment ability of invasive, hybrid progeny. Am J Bot 97:16981706
Hodkinson, TR, Chase, MW, Lledo, MD, Salamin, N, Renvoize, SA (2002a) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381392
Hodkinson, TR, Chase, MW, Takahashi, C, Leitch, IJ, Bennett, MD, Renvoize, SA (2002b) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279286
Hovick, SM, Whitney, KD (2014) Hybridization is associated with increased fecundity and size in invasive taxa: meta-analytic support for the hybridization-invasion hypothesis. Ecol Lett 17:14641477
Jensen, E, Farrar, K, Thomas-Jones, S, Hastings, A, Donnison, I, Clifton-Brown, J (2011) Characterization of flowering time diversity in Miscanthus species. Glob Change Biol Bioenergy 3:387400
Kim, C, Zhang, D, Auckland, SA, Rainville, LK, Jacob, K, Kronmiller, B, Sacks, EJ, Deuter, M, Paterson, AH (2012) SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theor Appl Genet 124:13251338
Lavergne, S, Molofsky, J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:33833888
Li, Y, Cheng, ZM, Smith, WA, Ellis, DR, Chen, YQ, Zheng, XL, Pei, Y, Luo, KM, Zhao, DG, Yao, QH, Duan, H, Li, Q. (2004) Invasive ornamental plants: Problems, challenges, and molecular tools to neutralize their invasiveness. Crit Rev Plant Sci 23:381389
Lin, J, Gibbs, JP, Smart, LB (2009) Population genetic structure of native versus naturalized sympatric shrub willows ( Salix; Salicaceae). Am J Bot 96:771785
Linde-Laursen, I (1993) Cytogenetic analysis of Miscanthus × giganteus, an interspecific hybrid. Hereditas 119:297300
Lockwood, JL, Cassey, P, Blackburn, T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223228
Mack, R, Erneberg, M (2002) The United States naturalized flora: largely the product of deliberate introductions. Ann Mo Bot Gard 89:176189
Meyer, MH, Tchida, CL (1999) Miscanthus Anderss. produces viable seed in four USDA hardiness zones. J Environ Hortic 17:137140
Minnesota Department of Natural Resources (2016) Amur Silver Grass (Miscanthus sacchariflorus). http://www.dnr.state.mn.us/invasives/terrestrialplants/grasses/amursilvergrass.html. Accessed August 16, 2016
Minton, MS, Mack, RN (2010) Naturalization of plant populations: the role of cultivation and population size and density. Oecologia 164:399409
Nei, M (1972) Genetic distance between populations. Am Nat 106:283292
Nei, M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583590
Nishiwaki, A, Mizuguti, A, Kuwabara, S, Toma, Y, Ishigaki, G, Miyashita, T, Yamada, T, Matuura, H, Yamaguchi, S, Rayburn, AL, Akashi, R, Stewart, JR (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot 98:154159
Parks, JC, Werth, CR (1993) A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537544
Peakall, R, Smouse, PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. DOI: 10.1093/bioinformatics/bts460
Pilu, R, Cassani, E, Landoni, M, Badone, FC, Passera, A, Cantaluppi, E, Corno, L, Adani, F (2014) Genetic characterization of an Italian giant reed ( Arundo donax L.) clones collection: exploiting clonal selection. Euphytica 196:169181
Quinn, LD, Culley, TM, Stewart, JR (2012) Genetic comparison of introduced and native populations of Miscanthus sinensis (Poaceae), a potential bioenergy crop. Grassland Sci 58:101111
R Core Team (2015) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed August 16, 2016
Rayburn, AL, Crawford, J, Rayburn, CM, Juvik, JA (2009) Genome size of three Miscanthus species. Plant Mol Biol Rep 27:184188
Reichard, SH, White, P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103113
Sacks, E, Juvik, J, Lin, Q, Steward, JR, Yamada, T (2013a) The gene pool of Miscanthus species and its improvement. Pages 73101 in Paterson, AH, ed. Genomics of the Saccharinae. New York: Springer.
Sacks, EJ, Jakob, K, Gutterson, NI, inventors; Mendel Biotechnology Inc., assignee. (2013b) High biomass Miscanthus varieties. U.S. patent 2013/0111619 A1
Sakai, AK, Allendorf, FW, Holt, JS, Lodge, DM, Molofsky, J, With, KA, Baughman, S, Cabin, RJ, Cohen, JE, Ellstrand, NC, McCauley, DE, O'Neil, P, Parker, IM, Thompson, JN, Weller, SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305332
Schnitzler, A, Essl, F (2015) From horticulture and biofuel to invasion: the spread of Miscanthus taxa in the USA and Europe. Weed Res 55:221225
Simpson, EH (1949) Measurement of diversity. Nature 163:688688
Smith, LL, Barney, JN (2014) The relative risk of invasion: evaluation of Miscanthus × giganteus seed establishment. Invasive Plant Sci Manage 7:93106
Stenberg, P, Lundmark, M, Saura, A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3:329331
Tamura, K, Uwatoko, N, Yamashita, H, Fujimori, M, Akiyama, Y, Shoji, A, Sanada, Y, Okumura, K, Gau, M (2016) Discovery of natural interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan: morphological characterization, genetic structure, and origin. Bioenerg Res 9:315325
Yan, J, Chen, W, Luo, F, Ma, H, Meng, A, Li, X, Zhu, M, Li, SS, Zhou, HF, Zhu, WX, Han, B, Ge, S, Li, JQ, Sang, T (2012) Variability and adaptability of Miscanthus species evaluated for energy crop domestication. Glob Change Biol Bioenergy 4:4960
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Invasive Plant Science and Management
  • ISSN: 1939-7291
  • EISSN: 1939-747X
  • URL: /core/journals/invasive-plant-science-and-management
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed