Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T12:46:02.864Z Has data issue: false hasContentIssue false

Genotype differences in photosynthetic characteristics and nitrogen efficiency of new-type oilseed rape responding to low nitrogen stress

Published online by Cambridge University Press:  30 July 2014

G. L. WANG
Affiliation:
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
G. D. DING
Affiliation:
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
F. S. XU
Affiliation:
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
H. M. CAI
Affiliation:
Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
J. ZOU
Affiliation:
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
X. S. YE*
Affiliation:
Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
*
*To whom all correspondence should be addressed. Email: xiangshengye@mail.hzau.edu.cn

Summary

New-type oilseed rape (Brassica napus, ArArCcCc) with introgressed exotic subgenomic components from Brassica rapa (ArAr) and Brassica carinata (BcBcCcCc) showed strong heterosis in both vegetative and reproductive growth. The aim of the current study was to analyse the tolerance of the new-type B. napus with different exotic subgenomic contents to low nitrogen (N) stress. Under hydroponic culture and pot experiments, root system parameters, photosynthetic parameters, relative chlorophyll concentration (SPAD values), biomass, seed yield, seed yield components, N concentration and expressions of genes involved in N transport and assimilation were determined with two new-type B. napus genotypes (N-efficient genotype D4-15 and N-inefficient genotype D1-1) under high-N and low-N levels. Furthermore, N accumulation, N transfer efficiency and N use efficiency (NUE) were analysed in the two genotypes. The hydroponic and potted growth tests showed consistent characteristics in N uptake and utilization efficiency at the seedling stage, and N-efficient genotype (D4-15) showed better growth phenotypes across cultured conditions and N levels. Under the low-N condition, D4-15 produced a larger root system and accumulated more N, and had higher N transfer efficiency and NUE than D1-1. Moreover, D4-15 had significantly higher photosynthetic parameters, photosynthetic NUE and expression levels of the N transporter genes, BnNRT1·1, BnNRT2·5, BnNRT2·7 and BnAMT1·1, in roots or leaves, as well as higher seed yield than that of D1-1 under low-N supply. These results indicated that the N-efficient new-type B. napus D4-15 possessed excellent adaptability to low-N stress, which may be attributed to the highly introgressed exotic subgenomic components from B. rapa and B. carinata, suggesting the possibility of identifying high-nutrient-efficiency germplasm from inter-specific hybrids.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beatty, P. H., Shrawat, A. K., Carroll, R. T., Zhu, T. & Good, A. G. (2009). Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. Plant Biotechnology Journal 7, 562576.CrossRefGoogle ScholarPubMed
Beatty, P. H., Anbessa, Y., Juskiw, P., Carroll, R. T., Wang, J. & Good, A. G. (2010). Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber. Annals of Botany 105, 11711182.CrossRefGoogle ScholarPubMed
Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q. & Lian, X. (2009). Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Reports 28, 527537.CrossRefGoogle ScholarPubMed
Chardon, F., Barthelemy, J., Daniel-Vedele, F. & Masclaux-Daubresse, C. (2010). Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. Journal of Experimental Botany 61, 22932302.CrossRefGoogle ScholarPubMed
Chen, G. X., Liu, S. H., Zhang, C. J. & Lu, C. G. (2004). Effects of drought on photosynthetic characteristics of flag leaves of a newly-developed super-high-yield rice hybrid. Photosynthetica 42, 573578.CrossRefGoogle Scholar
Chen, X., Li, M., Shi, J., Fu, D., Qian, W., Zou, J., Zhang, C. & Meng, J. (2008). Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theoretical and Applied Genetics 117, 10311040.CrossRefGoogle ScholarPubMed
Clark, R. B. & Duncan, R. R. (1991). Improvement of plant mineral nutrition through breeding. Field Crops Research 27, 219240.CrossRefGoogle Scholar
Cowling, W. A. (2007). Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Research 104, 103111.CrossRefGoogle Scholar
Dechorgnat, J., Nguyen, C. T., Armengaud, P., Jossier, M., Diatloff, E., Filleur, S. & Daniel-Vedele, F. (2010). From the soil to the seeds, the long journey of nitrate in plants. Journal of Experimental Botany 62, 13491359.CrossRefGoogle Scholar
Enjalbert, J. N., Zheng, S., Johnson, J. J., Mullen, J. L., Byrne, P. F. & McKay, J. K. (2013). Brassicaceae germplasm diversity for agronomic and seed quality traits under drought stress. Industrial Crops and Products 47, 176185.CrossRefGoogle Scholar
Fan, S. C., Lin, C. S., Hsu, P. K., Lin, S. H. & Tsay, Y. F. (2009). The Arabidopsis nitrate transporter NRT1·7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. The Plant Cell 21, 27502761.CrossRefGoogle ScholarPubMed
Feng, H., Yan, M., Fan, X., Li, B., Shen, Q., Miller, A. J. & Xu, G. (2011). Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany 62, 23192332.CrossRefGoogle ScholarPubMed
Frink, C. R., Waggoner, P. E. & Ausubel, J. H. (1999). Nitrogen fertilizer, retrospect and prospect. Proceedings of the National Academy of Sciences USA 96, 11751180.CrossRefGoogle ScholarPubMed
Fu, D., Qian, W., Zou, J. & Meng, J. (2012). Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica 184, 151164.CrossRefGoogle Scholar
Garnett, T., Conn, V. & Kaiser, B. N. (2009). Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell & Environment 32, 12721283.CrossRefGoogle ScholarPubMed
Ghannoum, O., Evans, J. R., Chow, W. S., Andrews, T. J., Conroy, J. P. & Von Caemmerer, S. (2005). Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiology 137, 638650.CrossRefGoogle ScholarPubMed
Good, A. G., Shrawat, A. K. & Muench, D. G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science 9, 597605.CrossRefGoogle ScholarPubMed
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M. & Zhang, F. S. (2010). Significant acidification in major Chinese croplands. Science 327, 10081010.CrossRefGoogle ScholarPubMed
Ho, C. H., Lin, S. H., Hu, H. C. & Tsay, Y. F. (2009). CHL1 functions as a nitrate sensor in plants. Cell 138, 11841194.CrossRefGoogle ScholarPubMed
Huang, N. C., Liu, K. H., Lo, H. J. & Tsay, Y. F. (1999). Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. The Plant Cell 11, 13811392.CrossRefGoogle ScholarPubMed
Kondo, M., Pablico, P. P., Aragones, D. V., Agbisit, R., Abe, J., Morita, S. & Courtois, B. (2003). Genotypic and environmental variations in root morphology in rice genotypes under upland field conditions. Plant and Soil 255, 189200.CrossRefGoogle Scholar
Kumar, A., Silim, S. N., Okamoto, M., Siddiqi, M. Y. & Glass, A. D. M. (2003). Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant, Cell and Environment 26, 907914.CrossRefGoogle ScholarPubMed
Li, M., Qian, W., Meng, J. & Li, Z. (2004). Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Research 12, 417426.CrossRefGoogle ScholarPubMed
Li, M., Liu, J., Wang, Y., Yu, L. & Meng, J. (2007). Production of partial new-typed Brassica napus by introgression of genomic components from B. rapa and B. carinata. Journal of Genetics and Genomics 34, 460468.CrossRefGoogle Scholar
Li, Y. (2011). Study on mechanisms of the effects of different nitrogen supplies on photosynthesis and photosynthetic nitrogen use efficiency of rice plants. Ph.D. Thesis, Nanjing Agricultural University, China (in Chinese).Google Scholar
Li, Y., Gao, Y., Xu, X., Shen, Q. & Guo, S. (2009). Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany 60, 23512360.CrossRefGoogle ScholarPubMed
Li, Y., Yang, X., Ren, B., Shen, Q. & Guo, S. (2012). Why nitrogen use efficiency decreases under high nitrogen supply in rice (Oryza sativa L.) seedlings. Journal of Plant Growth Regulation 31, 4752.CrossRefGoogle Scholar
Liu, H., Hu, C., Sun, X., Tan, Q., Nie, Z. & Hu, C. (2010). Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant and Soil 326, 345353.CrossRefGoogle Scholar
Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402408.CrossRefGoogle Scholar
Ludewig, U., Neuhauser, B. & Dynowski, M. (2007). Molecular mechanisms of ammonium transport and accumulation in plants. FEBS letters 581, 23012308.CrossRefGoogle ScholarPubMed
Malik, R. S. (1990). Prospects for Brassica carinata as an oilseed crop in India. Experimental Agriculture 26, 125129.CrossRefGoogle Scholar
Marmagne, A., Vinauger-Douard, M., Monachello, D., De-Longevialle, A. F., Charon, C., Allot, M., Rappaport, F., Wollman, F. A., Barbier-Brygoo, H. & Ephritikhine, G. (2007). Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and golgi membranes, respectively. Journal of Experimental Botany 58, 33853393.CrossRefGoogle ScholarPubMed
Meier, U. (1997). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.Google Scholar
Nagaharu, U. (1935). Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Journal of Botany 7, 389452.Google Scholar
Okamoto, M., Kumar, A., Li, W., Wang, Y., Siddiqi, M. Y., Crawford, N. M. & Glass, A. D. M. (2006). High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3·1. Plant Physiology 140, 10361046.CrossRefGoogle ScholarPubMed
Pang, J., Kobayashi, K. & Zhu, J. (2009). Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agriculture, Ecosystems and Environment 132, 203211.CrossRefGoogle Scholar
Peng, S., Huang, J., Zhong, X., Yang, J., Wang, G., Zou, Y., Zhang, F., Zhu, Q., Buresh, R. & Witt, C. (2002). Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agricultural Sciences in China 1, 776785.Google Scholar
Qian, W., Chen, X., Fu, D., Zou, J. & Meng, J. (2005). Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theoretical and Applied Genetics 110, 11871194.CrossRefGoogle Scholar
Remans, T., Nacry, P., Pervent, M., Girin, T., Tillard, P., Lepetit, M. & Gojon, A. (2006). A central role for the nitrate transporter NRT2·1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology 140, 909921.CrossRefGoogle ScholarPubMed
Ren, J. P., Dickson, M. H. & Earle, E. D. (2000). Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theoretical and Applied Genetics 100, 810819.CrossRefGoogle Scholar
Shi, L., Yang, J., Liu, J., Li, R., Long, Y., Xu, F. & Meng, J. (2012 a). Identification of quantitative trait loci associated with low boron stress that regulate root and shoot growth in Brassica napus seedlings. Molecular Breeding 30, 393406.CrossRefGoogle Scholar
Shi, T., Zhao, D., Li, D., Wang, N., Meng, J., Xu, F. & Shi, L. (2012 b). Brassica napus root mutants insensitive to exogenous cytokinin show phosphorus efficiency. Plant and Soil 358, 6174.CrossRefGoogle Scholar
Shi, W. M., Xu, W. F., Li, S. M., Zhao, X. Q. & Dong, G. Q. (2010). Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant and Soil 326, 291302.CrossRefGoogle Scholar
Svečnjak, Z. & Rengel, Z. (2006). Canola cultivars differ in nitrogen utilization efficiency at vegetative stage. Field Crops Research 97, 221226.CrossRefGoogle Scholar
Tong, Y., Zhou, J. J., Li, Z. & Miller, A. J. (2005). A two-component high-affinity nitrate uptake system in barley. The Plant Journal 41, 442450.CrossRefGoogle ScholarPubMed
Tsay, Y. F., Schroeder, J. I., Feldmann, K. A. & Crawford, N. M. (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705713.CrossRefGoogle ScholarPubMed
Wang, G. L., Ding, G. D., Li, L., Cai, H. M., Ye, X. S., Zou, J. & Xu, F. S. (2014). Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Annals of Botany. doi: 10.1093/aob/mcu135.CrossRefGoogle ScholarPubMed
Wang, Y., Xu, H., Kou, J., Shi, L., Zhang, C. & Xu, F. (2013). Dual effects of transgenic Brassica napus overexpressing CS gene on tolerances to aluminum toxicity and phosphorus deficiency. Plant and Soil 362, 231246.CrossRefGoogle Scholar
Xiao, Y., Chen, L., Zou, J., Tian, E., Xia, W. & Meng, J. (2010). Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical and Applied Genetics 121, 11411150.CrossRefGoogle ScholarPubMed
Xu, G., Fan, X. & Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63, 153182.CrossRefGoogle ScholarPubMed
Ye, X., Hong, J., Shi, L. & Xu, F. (2010). Adaptability mechanism of nitrogen-efficient germplasm of natural variation to low nitrogen stress in Brassica napus. Journal of Plant Nutrition 33, 20282040.CrossRefGoogle Scholar
Yuan, L., Loqué, D., Kojima, S., Rauch, S., Ishiyama, K., Inoue, E., Takahashi, H. & Von Wirén, N. (2007). The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell 19, 26362652.CrossRefGoogle ScholarPubMed
Zhai, H., Cao, S., Wan, J., Zhang, R., Lu, W., Li, L., Kuang, T., Min, S., Zhu, D. & Cheng, S. (2002). Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yielding hybrid rice (Oryza sativa L.). Science in China Series C: Life Sciences 45, 637646.CrossRefGoogle ScholarPubMed
Zhang, C. J., Chu, H. J., Chen, G. X., Shi, D. W., Zuo, M., Wang, J., Lu, C. G., Wang, P. & Chen, L. (2007). Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Journal of Plant Research 120, 209217.CrossRefGoogle ScholarPubMed
Zou, J., Jiang, C., Cao, Z., Li, R., Long, Y., Chen, S. & Meng, J. (2010 a). Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genome 53, 908916.CrossRefGoogle ScholarPubMed
Zou, J., Zhu, J., Huang, S., Tian, E., Xiao, Y., Fu, D., Tu, J., Fu, T. & Meng, J. (2010 b). Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theoretical and Applied Genetics 120, 283290.CrossRefGoogle ScholarPubMed