Skip to main content

Impact of high-temperature stress on rice plant and its traits related to tolerance

  • F. SHAH (a1), J. HUANG (a1), K. CUI (a1), L. NIE (a1), T. SHAH (a2), C. CHEN (a1) and K. WANG (a1)...

The predicted 2–4°C increment in temperature by the end of the 21st Century poses a threat to rice production. The impact of high temperatures at night is more devastating than day-time or mean daily temperatures. Booting and flowering are the stages most sensitive to high temperature, which may sometimes lead to complete sterility. Humidity also plays a vital role in increasing the spikelet sterility at increased temperature. Significant variation exists among rice germplasms in response to temperature stress. Flowering at cooler times of day, more pollen viability, larger anthers, longer basal dehiscence and presence of long basal pores are some of the phenotypic markers for high-temperature tolerance. Protection of structural proteins, enzymes and membranes and expression of heat shock proteins (HSPs) are some of the biochemical processes that can impart thermo-tolerance. All these traits should be actively exploited in future breeding programmes for developing heat-resistant cultivars. Replacement of heat-sensitive cultivars with heat-tolerant ones, adjustment of sowing time, choice of varieties with a growth duration allowing avoidance of peak stress periods, and exogenous application of plant hormones are some of the adaptive measures that will help in the mitigation of forecast yield reduction due to global warming.

Corresponding author
*To whom all correspondence should be addressed. Email:
Hide All
Abeysiriwardena, D. S., De, Z., Ohba, K. & Maruyama, A. (2002). Influence of temperature and relative humidity on grain sterility in rice. Journal of the National Science Foundation of Sri Lanka 30, 3341.
Afuakwa, J. J., Crookston, R. K. & Jones, R. J. (1984). Effect of temperature and sucrose availability on kernel black layer development in maize. Crop Science 24, 285288.
Ahmad, S., Li, C., Dai, G., Zhan, M., Wang, J., Pan, S. & Cao, C. (2009). Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil and Tillage Research 106, 5461.
Akman, Z. (2009). Comparison of high temperature tolerance in maize, rice and sorghum seeds, by plant growth regulators. Journal of Animal and Veterinary Advances 8, 358361.
Baker, J. T., Allen, L. H. Jr & Boote, K. J. (1990). Growth and yield responses of rice to carbon dioxide concentration. Journal of Agricultural Science, Cambridge 115, 313320.
Baker, J. T., Allen, L. H. Jr. & Boote, K. J. (1992). Temperature effects on rice at elevated CO2 concentration. Journal of Experimental Botany 43, 959964.
Burke, J. J., O'Mahony, P. J. & Oliver, M. J. (2000). Isolation of Arabidopsis mutants lacking components of acquired thermotolerance. Plant Physiology 123, 575587.
Cardon, L. R. & Bell, J. I. (2001). Association study designs for complex diseases. Nature Reviews Genetics 2, 9199.
Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H. & Nachit, M. (2010). Plant breeding and climate changes. Journal of Agricultural Science, Cambridge 148, 627637.
Chang, P. F. L., Jinn, T. L., Huang, W. K., Chen, Y., Chang, H. M. & Wang, C. W. (2007). Induction of a cDNA clone from rice encoding a class II small heat shock protein by heat stress, mechanical injury, and salicylic acid. Plant Science 172, 6475.
Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J. M., Wasternack, C. & Mur, L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist 182, 175187.
Dinar, M. & Rudich, J. (1985). Effect of heat stress on assimilate partitioning in tomato. Annals of Botany 56, 239248.
Efeoglu, B. (2009). Heat shock proteins and heat shock response in plants. Gazi University Journal of Science 22, 6775.
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.
Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., Higashitani, A., Watanabe, M. & Kawagishi-Kobayashi, M. (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant and Cell Physiology 50, 19111922.
Farrell, T. C., Fox, K. M., Williams, R. L. & Fukai, S. (2006). Genotypic variation for cold tolerance during reproductive development in rice: screening with cold air and cold water. Field Crops Research 98, 178194.
Goldberg, R. B., Beals, T. P. & Sanders, P. M. (1993). Anther development: basic principles and practical applications. Plant Cell 5, 12171229.
Huang, B. & Xu, C. (2008). Identification and characterization of proteins associated with plant tolerance to heat stress. Journal of Integrative Plant Biology 50, 12301237.
IPCC (Intergovernmental Panel on Climate Change) (2007). Climate change and its impacts in the near and long term under different scenarios. In Climate Change 2007: Synthesis Report (Eds The Core Writing Team, Pachauri, R. K. & Reisinger, A.), pp. 4354. Geneva, Switzerland: IPCC.
IRGSP (International Rice Genome Sequencing Project) (2005). The map-based sequence of the rice genome. Nature 436, 793800.
IRRI (1976). Annual Report. Manila, The Philippines: IRRI.
IRRI (1977). Annual Report. Manila, The Philippines: IRRI.
Ishimaru, T., Hirabayashi, H., Ida, M., Takai, T., San-Oh, Y. A., Yoshinaga, S., Ando, I., Ogawa, T. & Kondo, M. (2010). A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany 106, 515520.
Ismail, A. M., Heuer, S., Thomson, M. J. & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology 65, 547570.
Jagadish, S. V. K., Craufurd, P. Q. & Wheeler, T. R. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany 58, 16271635.
Jeon, J. S., Lee, S., Jung, K. H., Jun, S. H., Jeong, D. H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., An, K., Han, M. J., Sung, R. J., Choi, H. S., Yu, J. H., Choi, J. H., Cho, S. Y., Cha, S. S., Kim, S. I. & An, G. (2000). Technical Advance: T-DNA insertional mutagenesis for functional genomics in rice. Plant Journal 22, 561570.
Jones, M. P., Dingkuhn, M., Aluko, G. K. & Semon, M. (1997). Interspecific Oryza sativa L.×O. glaberrima Steud. progenies in upland rice improvement. Euphytica 92, 237246.
Katiyar-Agarwal, S., Agarwal, M. & Grover, A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology 51, 677686.
Keijzer, C. J., Leferink-Ten Klooster, H. B. & Reinders, M. C. (1996). The mechanics of the grass flower: anther dehiscence and pollen shedding in maize. Annals of Botany 78, 1521.
Keeling, P. L., Banisadr, R., Barone, L., Wasserman, B. P. & Singletary, G. W. (1994). Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Australian Journal of Plant Physiology 21, 807827.
Klueva, N. Y., Maestri, E., Marmiroli, N. & Nguyen, H. T. (2001). Mechanisms of thermotolerance in crops. In Crop Responses and Adaptations to Temperature Stress (Ed. Basra, A. S.), pp. 177218. Binghampton, NY: Food Products Press.
Kobayasi, K. & Atsuta, Y. (2010). Sterility and poor pollination due to early flower opening induced by methyl jasmonate. Plant Production Science 13, 2936.
Krishnan, P. & Surya Rao, A. V. (2005). Effects of genotype and environment on seed yield and quality of rice. Journal of Agricultural Science, Cambridge 143, 283292.
Kropff, M. J., Mathews, R. B., Van Laar, H. H. & Ten Berge, H. F. M. (1995). The rice model Oryza 1 and its testing. In Modeling the Impact of Climate Change on Rice Production in Asia (Eds Mathews, R. B., Kropff, M. J., Bachelet, D. & van Laar, H. H.), pp. 2750. Wallingford, Oxon, UK & Los Banos, Philippines: CABI & IRRI.
Kukla, G. & Karl, T. R. (1993). Nighttime warming and the green house effect. Environmental Science and Technology 27, 14681474.
Larkindale, J., Hall, J. D., Knight, M. R. & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138, 882897.
Larkindale, J. & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiology 128, 682695.
Larkindale, J. & Vierling, E. (2008). Core genome responses involved in acclimation to high temperature. Plant Physiology 146, 748761.
Lee, J. H., Hubel, A. & Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant Journal 8, 603612.
Liu, J. G., Qin, Q. L., Zhang, Z., Peng, R. H., Xiong, A. S., Chen, J. M. & Yao, Q. H. (2009). OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. Biochemistry and Molecular Biology Reports 42, 1621.
Mackill, D. J., Coffman, W. R. & Rutger, J. N. (1982). Pollen shedding and combining ability for high temperature tolerance in rice. Crop Science 22, 730733.
Maestri, E., Klueva, N., Perrota, C., Gulli, M., Nguyen, H. T. & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology 48, 667681.
Maraseni, T. N., Mushtaq, S. & Maroulis, J. (2009). Greenhouse gas emissions from rice farming inputs: a cross-country assessment. Journal of Agricultural Science, Cambridge 147, 117126.
Matsui, T. (2005). Function of long basal dehiscence of the theca in rice (Oryza sativa L.) pollination under hot and humid condition. Phyton 45, 401407.
Matsui, T. & Kagata, H. (2003 a). Characteristics of floral organs related to reliable self pollination in rice (Oryza sativa L.). Annals of Botany 91, 473477.
Matsui, T. & Kagata, H. (2003 b). Gas exchange through the slit between the lemma and the palea in the rice (Oryza sativa L.) floret before anthesis. Plant Production Science 6, 262264.
Matsui, T., Kobayasi, K., Kagata, H. & Horie, T. (2005). Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot and humid condition. Plant Production Science 8, 109114.
Matsui, T., Kobayasi, K., Yoshimota, M. & Hasegawa, T. (2007). Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia. Plant Production Science 10, 5763.
Matsui, T., Namuco, O. S., Ziska, L. H. & Horie, T. (1997 a). Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Research 51, 213219.
Matsui, T., Omasa, K. & Horie, T. (1997 b). High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity condition. Japanese Journal of Crop Science 66, 449455.
Matsui, T. & Omasa, K. (2002). Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Annals of Botany 89, 683687.
Matsui, T., Omasa, K. & Horie, T. (1999 a). Mechanism of anther dehiscence in rice (Oryza sativa L.). Annals of Botany 84, 501506.
Matsui, T., Omasa, K. & Horie, T. (1999 b). Rapid swelling of pollen grains in response to floret opening unfolds locule in rice. Plant Production Science 2, 196199.
Matsui, T., Omasa, K. & Horie, T. (2000). High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Production Science 3, 430434.
Matsui, T., Omasa, K. & Horie, T. (2001). The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4, 9093.
Michael, G. & Beringer, H. (1980). The role of hormones in yield formation. In Physiological Aspects of Crop Productivity: Proceedings of the 15th Colloquium of the International Potash Institute, held in Wageningen, the Netherlands (Eds Michael, G. & Beringer, H.), pp. 85116. Bern, Switzerland: International Potash Institute.
Mohammed, A. R. & Tarpley, L. (2009 a). High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology 149, 9991008.
Mohammed, A. R. & Tarpley, L. (2009 b). Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science 49, 313322.
Morita, S., Shiratsuchi, H., Takahashi, J. & Fujita, K. (2004). Effect of high temperature on ripening in rice plants: analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Japanese Journal of Crop Science 73, 7783 [in Japanese with English summary].
Moya, T. B., Ziska, L. H., Namuco, O. S. & Olszyk, D. (1998). Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Global Change Biology 4, 645656.
Nagai, T. & Makino, A. (2009). Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant and Cell Physiology 50, 744755.
Nakagawa, H., Horie, T. & Matsui, T. (2003). Effects of climate change on rice production and adaptive technologies. In Rice Science: Innovations and Impact for Livelihood. Proceedings of the International Rice Research Conference, Beijing, China, 16–19 September 2002 (Eds Mew, T. W., Brar, D. S., Peng, S., Dawe, D. & Hardy, B.), pp. 635658. Manila, The Philippines: IRRI.
Nakagawa, H., Takahashi, W., Hasegawa, T., Watanabe, T. & Horie, T. (2001). Development of a three-dimensional simulator for rice growth and development. II. Accuracy of a rice phenology model to simulate heading stage and plant age in leaf number. Japanese Journal of Crop Science 70, 125126.
Nishiyama, I. & Blanco, L. (1980). Avoidance of high-temperature sterility by flower opening early in the morning. Japan Agricultural Research Quarterly 14, 116117.
Nishiyama, I. & Blanco, L. (1981). Artificial control of flower opening time during the day in rice plants. Japanese Journal of Crop Science 1, 5966.
Nishiyama, I. & Satake, T. (1981). High temperature damage in the rice plant. Japanese Journal of Tropical Agriculture 26, 1925.
Pareek, A., Singla, S. L. & Grover, A. (1995). Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Molecular Biology 29, 293301.
Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S. & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, USA 101, 99719975.
Prasad, P. V. V., Boote, K. J., Allen, L. H. Jr, Sheehy, J. E. & Thomas, J. M. G. (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95, 398411.
Rosenzweig, C. & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature 367, 133138.
Satake, T. & Yoshida, S. (1978). High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science 47, 617.
Sheehy, J. E., Elmido, A., Centeno, G. & Pablico, P. (2005). Searching for new plants for climate change. Journal of Agricultural Meteorology 60, 463468.
Sheehy, J. E., Elmido, A. & Mitchell, P. (2001). Are there time-of-day clock genes for flowering? In Annual Meeting of the American Society of Agronomy October 21–25, 2001, Charlotte, NC, USA. Abstract, p. 56. Madison, WI: ASA.
Shimazaki, Y., Satake, T., Watanabe, K. & Ito, N. (1964). Effect of day- and night-temperature accompanied by shading treatment during the booting stage upon the induction of sterile spikelets in rice plants. (Studies of cool weather injuries of rice plants in northern part of Japan. IV.) [In Japanese, with English summary]. Research Bulletin of the Hokkaido National Agricultural Experiment Station 83, 1016.
Singletary, G. W., Banisadr, R. & Keeling, P. L. (1994). Heat stress during grain filling in maize. Effects on carbohydrate storage and metabolism. Australian Journal of Plant Physiology 21, 829841.
Smith, P. & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, Cambridge 148, 543552.
Song, Z. P., Lu, B. R. & Chen, K. J. (2001). A study of pollen viability and longevity in Oryza rufipogon, O. sativa and their hybrids. International Rice Research Notes 26, 3132.
Stone, P. (2001). The effects of heat stress on cereal yield and quality. In Crop Responses and Adaptations to Temperature Stress (Ed. Basra, A. S.), pp. 243291. Binghamton, NY, USA: Food Products Press.
Takeoka, Y., Al Mamun, A., Wada, T. & Kaufman, P. B. (1992). Primary features of the effect of environmental stress on rice spikelet morphogenesis. In Reproductive Adaptation of Rice to Environmental Stress (Eds Takeoka, Y., Al Mamun, A., Wada, T. & Kaufman, P. B.), pp. 113141. Developments in Crop Science Vol. 22. Tokyo, Japan: Japan Scientific Societies Press/Elsevier.
Tang, R. S., Zheng, J. C., Jin, Z. Q., Zhang, D. D., Huang, Y. H. & Chen, L. G. (2008). Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, Gas and ABA in rice (Oryza sativa L.). Plant Growth Regulation 54, 3743.
Timperio, A. M., Egidi, M. G. & Zolla, L. (2008). Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of Proteomics 71, 391411.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany 61, 199223.
Wassmann, R. & Dobermann, A. (2007). Climate change adaptation through rice production in regions with high poverty levels. Ejournal of SAT Agricultural Research 4. Available online at: (verified 8 Feb 2011).
Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R. K., Howell, G., Pathak, H. & Sumfleth, K. (2009 a). Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy 101, 59122.
Wassmann, R., Jagadish, S. V. K., Sumfleth, K., Pathak, H., Howell, G., Ismail, A., Serraj, R., Redona, E., Singh, R. K. & Heuer, S. (2009 b). Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Advances in Agronomy 102, 91133.
Watanabe, T. & Kume, T. (2009). A general adaptation strategy for climate change impacts on paddy cultivation: special reference to the Japanese context. Paddy and Water Environment 7, 313320.
Weerakoon, W. M. W., Maruyama, A. & Ohba, K. (2008). Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L). Journal of Agronomy and Crop Science 194, 135140.
Yamanouchi, U., Yano, M., Lin, H., Ashikari, M. & Yamada, K. (2002). A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences, USA 99, 75307535.
Yan, C., Ding, Y., Wang, Q., Liu, Z., Li, G., Muhammad, I. & Wang, S. (2010). The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. Journal of Agricultural Science, Cambridge 148, 329339.
Yin, X., Kroff, M. J. & Goudriann, J. (1996). Differential effects of day and night temperature on development to flowering in rice. Annals of Botany 77, 203213.
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M. & Oda, K. (2008). Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227, 957967.
Yoshida, S. (1978). Tropical Climate and its Influence on Rice. IRRI Research Paper Series 20. Los Baños, The Philippines: IRRI.
Yoshida, S. (1981). Fundamentals of Rice Crop Science. Los Baños, The Philippines: IRRI.
Yoshida, S., Satake, T. & Mackill, D. S. (1981). High Temperature Stress in Rice. IRRI Research Paper Series 67. Los Baños, The Philippines: IRRI.
Yu, K., Chen, G. & Patrick, W. H. Jr (2004). Reduction of global warming potential contribution from a rice field by irrigation, organic matter, and fertilizer management. Global Biogeochemical Cycles 18, doi: 10.1029/2004GB002251.
Zeng, X. C., Zhou, X., Zhang, W., Murofushi, N., Kitahara, T. & Kamuro, Y. (1999). Opening of rice floret in rapid response to methyl jasmonate. Journal of Plant Growth Regulation 18, 153158.
Zhang, G. L., Chen, L. Y., Xiao, G. Y., Xiao, Y. H., Chen, X. B. & Zhang, S. T. (2009). Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agricultural Sciences in China 8, 482487.
Zhu, Q. H., Ramm, K., Shivakkumar, R., Dennis, E. S. & Upadhyaya, N. M. (2004). The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiology 135, 15141525.
Ziska, L. H. & Manalo, P. A. (1996). Increasing night temperature can reduce seed set and potential yield of tropical rice. Australian Journal of Plant Physiology 23, 791794.
Ziska, L. H., Manalo, P. A. & Ordonez, R. A. (1996). Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: growth and yield response of 17 cultivars. Journal of Experimental Botany 47, 13531359.
Ziska, L. H. & Teramura, A. H. (1992). Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 – photosynthetic, biomass and reproductive characteristics. Physiologia Plantarum 84, 269274.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed