Abramowitz, M. and Stegun, I. A. (eds) (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn.
World Scientific, Hackensack, NJ.
Balabdaoui, F. and Wellner, J. A. (2007). Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Statist.
35, 2536–2564.
Bertin, E. M. J., Cuculescu, I. and Theodorescu, R. (1997). Unimodality of Probability Measures. Kluwer, Dordrecht.
Constantinescu, C., Hashorva, E. and Ji, L. (2011). Archimedian copulas in finite and infinite dimensions—with applications to ruin problems. Insurance Math. Econom.
49, 487–495.
Cox, D. R. (1962). Renewal Theory. John Wiley, New York.
Denuit, M. and Lefèvre, C. (1997). Some new classes of stochastic order relations among arithmetic random variables, with applications in actuarial sciences. Insurance Math. Econom.
20, 197–213.
Denuit, M., De Vylder, E. and Lefèvre, C. (1999a). Extremal generators and extremal distributions for the continuous s-convex stochastic orderings. Insurance Math. Econom.
24, 201–217.
Denuit, M., Lefèvre, C. and Mesfioui, M. (1999b). On s-convex stochastic extrema for arithmetic risks. Insurance Math. Econom.
25, 143–155.
Denuit, M., Lefèvre, C. and Shaked, M. (1998). The s-convex orders among real random variables, with applications. Math. Inequal. Appl.
1, 585–613.
Denuit, M., Lefèvre, C. and Shaked, M. (2000). Stochastic convexity of the Poisson mixture model. Methodology Comput. Appl. Prob.
2, 231–254.
Denuit, M., Lefèvre, C. and Utev, S. (1999c). Generalized stochastic convexity and stochastic orderings of mixtures. Prob. Eng. Inf. Sci.
13, 275–291.
Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity, and Applications. Academic Press, Boston, MA.
Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn.
John Wiley, New York.
Furman, E. and Zitikis, R. (2009). Weighted pricing functionals with applications to insurance: an overview. N. Amer. Actuarial J.
13, 483–496.
Gerber, H. U. (1972). Ein satz von Khintchin und die varianz von unimodalen. Bull. Swiss Assoc. Actuaries, 225–231.
Gneiting, T. (1999). Radial positive definite functions generated by Euclid's hat. J. Multivariate Anal. 69, 88–119.
Goovaerts, M. J., Kaas, R., Dhaene, J. and Tang, Q. (2003). A unified approach to generate risk measures. ASTIN Bull. 33, 173–192.
Goovaerts, M. J., Kaas, R., Van Heerwaarden, A. E. and Bauwelinckx, T. (1990). Effective Actuarial Methods. North-Holland, Amsterdam.
Kaas, R. and Goovaerts, M. J. (1987). Unimodal distributions in insurance. Bull. Assoc. R. Actuaires Belges
81, 61–66.
Kaas, R., van Heerwaarden, A. E. and Goovaerts, M. J. (1994). Ordering of Actuarial Risks. CAIRE, Brussels.
Kaas, R., Goovaerts, M. J., Dhaene, J. and Denuit, M. (2008). Modern Actuarial Risk Theory: Using R. Springer, Heidelberg.
Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. John Wiley, New York.
Lefèvre, C. and Loisel, S. (2010). Stationary-excess operator and convex stochastic orders. Insurance Math. Econom.
47, 64–75.
Lefèvre, C. and Utev, S. (1996). Comparing sums of exchangeable Bernoulli random variables. J. Appl. Prob.
33, 285–310.
Lefèvre, C. and Utev, S. (2013). Convolution property and exponential bounds for symmetric monotone densities. ESAIM Prob. Statist.
17, 605–613.
Lévy, P. (1962). Extensions d'un théorème de D. Dugué et M. Girault. Z. Wahrscheinlichkeitsth.
1, 159–173.
Pakes, A. G. (1996). Length biasing and laws equivalent to the log-normal. J. Math. Anal. Appl.
197, 825–854.
Pakes, A. G. (1997). Characterization by invariance under length-biasing and random scaling. J. Statist. Planning Infer. 63, 285–310.
Pakes, A. G. (2003). Biological applications of branching processes. In Stochastic Processes: Modelling and Simulation (Handbook Statist. 21), eds Shanbhag, D. N. and Rao, C. R., North-Holland, Amsterdam, pp. 693–773.
Pakes, A. G. and Navarro, J. (2007). Distributional characterizations through scaling relations. Austral. N. Ze. J. Statist.
49, 115–135.
Patil, G. P. and Rao, C. R. (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics
34, 179–189.
Pecarić, J. E., Proschan, F. and Tong, Y. L. (1992). Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, Boston, MA.
Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.
Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Prob.
7, 893–899.
Williamson, R. E. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J.
23, 189–207.