Skip to main content
×
×
Home

Engineering to support wellbeing of dairy animals

  • Gerardo Caja (a1), Andreia Castro-Costa (a1) and Christopher H. Knight (a2)
Abstract

Current trends in the global milk market and the recent abolition of milk quotas have accelerated the trend of the European dairy industry towards larger farm sizes and higher-yielding animals. Dairy cows remain in focus, but there is a growing interest in other dairy species, whose milk is often directed to traditional and protected designation of origin and gourmet dairy products. The challenge for dairy farms in general is to achieve the best possible standards of animal health and welfare, together with high lactational performance and minimal environmental impact. For larger farms, this may need to be done with a much lower ratio of husbandry staff to animals. Recent engineering advances and the decreasing cost of electronic technologies has allowed the development of ‘sensing solutions’ that automatically collect data, such as physiological parameters, production measures and behavioural traits. Such data can potentially help the decision making process, enabling early detection of health or wellbeing problems in individual animals and hence the application of appropriate corrective husbandry practices. This review focuses on new knowledge and emerging developments in welfare biomarkers (e.g. stress and metabolic diseases), activity-based welfare assessment (e.g. oestrus and lameness detection) and sensors of temperature and pH (e.g. calving alert and rumen function) and their combination and integration into ‘smart’ husbandry support systems that will ensure optimum wellbeing for dairy animals and thereby maximise farm profitability. Use of novel sensors combined with new technologies for information handling and communication are expected to produce dramatic changes in traditional dairy farming systems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Engineering to support wellbeing of dairy animals
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Engineering to support wellbeing of dairy animals
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Engineering to support wellbeing of dairy animals
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*For correspondence; e-mail: gerardo.caja@uab.cat
References
Hide All
AIC (Association Instituts Carnot) 2010 White paper: Smart Networked Objects & Internet of Things V 1.0. http://homepages.laas.fr/mkilliji/docs/books/blanc-carnot.pdf
Albrechtsen, M, Duse, AT, Bennedsgaard, TW & Klaas, IC 2011 Use of in-line measurements of somatic cell count to evaluate treatment efficacy of subclinical bovine Staphylococcus aureus mastitis. In Udder Health and Communication, pp. 309315 (Ed. Hogeveen, H & Lam, TJGM). Wageningen, NL: Wageningen Academic Pub
Berckmans, D 2008 Precision livestock farming (PLF). Computers and Electronics in Agriculture 62 1
Bikker, JP, van Laar, H, Rump, P, Doorenbos, J, van Meurs, K, Griffioen, GM & Dijkstra, J 2014 Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. Journal of Dairy Science 97 29742979
Bocquier, F, Debus, N, Lurette, A, Maton, C, Viudes, G, Moulin, CH & Jouven, M 2014 Elevage de précision en systèmes d’élevage peu intensifiés. INRA Productions Animales 27 101112
Caja, G, Carné, S, Salama, AAK, Ait-Saidi, A, Rojas-Olivares, MA, Rovai, M, Capote, J, Castro, N, Argüello, A, Ayadi, M, Aljumaah, R & Alshaikh, MA 2014 State-of-the-art of electronic identification techniques and applications in goats. Small Ruminant Research 121 4250
Capper, JL, Cady, RA & Bauman, DE 2009 The environmental impact of dairy production: 1944 compared with 2007. Journal of Animal Science 87 21602167
Castro-Costa, A, Caja, G, Salama, AAK, Rovai, M, Flores, C & Aguiló, J 2014 Thermographic variation of the udder of dairy ewes at early-lactation and following an E. coli endotoxin intramammary Chalena at late-lactation. Journal of Dairy Science 97 13771387
Chiumia, D, Chagunda, MGG, Macrae, AI & Roberts, DJ 2013 Predisposing factors for involuntary culling in Holstein–Friesian dairy cows. Journal of Dairy Research 80 4550
DairyCare 2016 European Commission COST Action FA1308 http://www.dairycareaction.org/
De Marchi, M, Toffanin, V, Cassandro, M & Penasa, M 2014 Mid-infrared spectroscopy as phenotyping tool for milk traits. Journal of Dairy Science 97 11711186
De Vries, M, Bokkers, EA, van Schaik, G, Botreau, R, Engel, B, Dijkstra, T & de Boer, IJ 2013 Evaluating results of the Welfare Quality multi-criteria evaluation model for classification of dairy cattle welfare at the herd level. Journal of Dairy Science 96 62646273
Duncan, IJH & Fraser, D 1997 Understanding animal welfare. In Animal Welfare, pp. 1931 (Ed. Appleby, MA & Hughes, BO). Wallingford, UK: CABI Publishers
EU-PLF 2016 Smart farming for Europe http://www.eu-plf.eu/
FAOStat 2016. Food and Agricultural Organization of the United Nations, Statistics Division. Livestock Primary. http://faostat3.fao.org/download/Q/QL/E
Farm Animal Welfare Council (FAWC) 2014 FAWC reviews the evidence base for animal welfare. Veterinary Record 175 33
Forkman, B & Keeling, L 2009 Assessment of animal welfare measures for dairy cattle, beef bulls and veal calves. In Welfare Quality® report 11 Series pp 1175 (Ed. Miele, M & Roex, J). Cardiff, UK: Cardiff University
FP7-ProHealth 2016 http://www.fp7-prohealth.eu/
Hadley, GL, Wolf, CA & Harsh, SB 2006 Dairy cattle culling patterns, explanations, and implications. Journal of Dairy Science 89 22862296
Hanton, JP & Leach, HA 1974 Electronic livestock identification system. US Patent No. 4262632
Itle, AJ, Huzzey, JM, Weary, DM & von Keyserlingk, MAG 2015 Clinical ketosis and standing behavior in transition cows. Journal of Dairy Science 98 128134
Krukowski, M 2009 Automatic determination of body condition score of dairy cows from 3D images. MSci Thesis. Stockholm, Sweden: Royal Institute of Technology, School of Computer Science and Communication
LaFleur, K, Cassady, K, Doud, A, Shades, K, Rogin, E & He, B 2013 Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. Journal of Neural Engineering 10 115
Larsen, T, Alstrup, L & Weisbjerg, MR 2016 Minor milk constituents are affected by protein concentration and forage digestibility in the feed ration. Journal of Dairy Research 83 1219
Leitner, G, Merin, U, Lemberskiy-Kuzin, L, Bezman, D & Katz, G 2012 Real-time visual/near-infrared analysis of milk-clotting parameters for industrial applications. Animal 6 11701177
Madouasse, A, Huxley, JN, Browne, WJ, Bradley, AJ, Dryden, IL & Green, MJ 2010 Use of individual cow milk recording data at the start of lactation to predict the calving to conception interval. Journal of Dairy Science 93 46774690
Michaelis, I, Burfeind, O & Heuwieser, W 2014 Evaluation of oestrous detection in dairy cattle comparing an automated activity monitoring system to visual observation. Reproduction in Domestic Animals 49 621628
Milán, MJ, Caja, G, González-González, R, Férnández-Pérez, AM & Such, X 2011 Structure and performance of Awassi and Assaf dairy sheep farms in northwestern Spain. Journal of Dairy Science 94 771784
Mohd-Nor, NM, Steeneveld, W & Hogeveen, H 2014 The average culling rate of Dutch dairy herds over the years 2007 to 2010 and its association with herd reproduction, performance and health. Journal of Dairy Research 81 18
Mugera, AW & Bitsch, V 2005 Managing labor on dairy farms: a resource-based perspective with evidence from case studies. International Food and Agribusiness Management Review 8 7998
Rutten, CJ, Velthuis, AGJ, Steeneveld, W & Hogeveen, H 2013 Sensors to support health management on dairy farms. Journal of Dairy Science 96 19281952
Spicka, J & Smutka, L 2014 The technical efficiency of specialised milk farms: a regional view. The Scientific World Journal 2014 113
Sutton, JD & Morant, SV 1989 A review of the potential of nutrition to modify milk fat and protein. Livestock Production Science 23 219237
van Gastelen, S & Dijkstra, J 2016 Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. Journal of the Science of Food and Agriculture 96 http://onlinelibrary.wiley.com/doi/10.1002/jsfa.7718/pdf
Varden Labs 2016 http://vardenlabs.com/
Walsh, RB, Walton, JS, Kelton, DF, LeBlanc, SJ, Leslie, KE & Duffield, TF 2007 The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows. Journal of Dairy Science 90 27882796
WHO 1946 Constitution of the World Health Organisation. American Journal of Public Health and Nations Health 36 13151323
Zobel, G, Leslie, K, Weary, DM & von Keyserlingk, MAG 2015 Ketonemia in dairy goats: effect of dry period length and effect on lying behavior. Journal of Dairy Science 98 61286138
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Dairy Research
  • ISSN: 0022-0299
  • EISSN: 1469-7629
  • URL: /core/journals/journal-of-dairy-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 114
Total number of PDF views: 1584 *
Loading metrics...

Abstract views

Total abstract views: 1348 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st August 2018. This data will be updated every 24 hours.