Skip to main content Accessibility help
Hostname: page-component-55597f9d44-zdfhw Total loading time: 0.737 Render date: 2022-08-11T07:21:37.016Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Metabolomics in the developmental origins of obesity and its cardiometabolic consequences

Published online by Cambridge University Press:  29 January 2015

M. F. Hivert
Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
W. Perng*
Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
S. M. Watkins
Metabolon Inc., West Sacramento, CA, USA
C. S. Newgard
Nutrition and Metabolism Center, Duke University of Medicine, Durham, NC, USA
L. C. Kenny
The Irish Center for Fetal and Neonatal Translational Research, University College Cork, Co. Cork, USA
B. S. Kristal
Departments of Neurosurgery, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
M. E. Patti
Research Division, Joslin Diabetes Center, Boston, MA, USA
E. Isganaitis
Research Division, Joslin Diabetes Center, Boston, MA, USA
D. L. DeMeo
Department of Medicine, Channing Division of Network Medicine and Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
E. Oken
Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
M. W. Gillman
Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
*Address for correspondence: W. Perng, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 133 Brookline Avenue, 3rd floor, Boston 02215, USA. (Email


In this review, we discuss the potential role of metabolomics to enhance understanding of obesity-related developmental origins of health and disease (DOHaD). We first provide an overview of common techniques and analytical approaches to help interested investigators dive into this relatively novel field. Next, we describe how metabolomics may capture exposures that are notoriously difficult to quantify, and help to further refine phenotypes associated with excess adiposity and related metabolic sequelae over the life course. Together, these data can ultimately help to elucidate mechanisms that underlie fetal metabolic programming. Finally, we review current gaps in knowledge and identify areas where the field of metabolomics is likely to provide insights into mechanisms linked to DOHaD in human populations.

© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Contributed equally as first author


1. Newgard, CB, An, J, Bain, JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009; 9, 311326.CrossRefGoogle ScholarPubMed
2. Barker, DJ, Winter, PD, Osmond, C, Margetts, B, Simmonds, SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989; 2, 577580.CrossRefGoogle ScholarPubMed
3. Barker, DJ, Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986; 1, 10771081.CrossRefGoogle ScholarPubMed
4. Barker, DJ, Gluckman, PD, Godfrey, KM, et al. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993; 341, 938941.CrossRefGoogle ScholarPubMed
5. Wishart, DS, Jewison, T, Guo, AC, et al. HMDB 3.0 – The Human Metabolome Database in 2013. Nucleic Acids Res. 2013; 41 (Database issue) D801D807.CrossRefGoogle ScholarPubMed
6. Tuck, MK, Chan, DW, Chia, D, et al. Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res. 2009; 8, 113117.CrossRefGoogle ScholarPubMed
7. Holland, NT, Smith, MT, Eskenazi, B, Bastaki, M. Biological sample collection and processing for molecular epidemiological studies. Mutat Res. 2003; 543, 217234.CrossRefGoogle ScholarPubMed
8. John, MW. ed. Metabolomics methods and protocols. In Methods in Molecular Biology (ed. Weckwerth W), 2007; pp. 37. Humana Press: Totowa, NJ.Google Scholar
9. Dunn, WB, Broadhurst, D, Begley, P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011; 6, 10601083.CrossRefGoogle ScholarPubMed
10. Dietmair, S, Timmins, NE, Gray, PP, Nielsen, LK, Kromer, JO. Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem. 2010; 404, 155164.CrossRefGoogle ScholarPubMed
11. Teahan, O, Gamble, S, Holmes, E, et al. Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem. 2006; 78, 43074318.CrossRefGoogle ScholarPubMed
12. Saude, E, Sykes, B. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics. 2007; 3, 1927.CrossRefGoogle Scholar
13. Yin, P, Peter, A, Franken, H, et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin Chem. 2013; 59, 833845.CrossRefGoogle ScholarPubMed
14. Dunn, WB, Broadhurst, DI, Atherton, HJ, Goodacre, R, Griffin, JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev. 2011; 40, 387426.CrossRefGoogle ScholarPubMed
15. Wu, H, Southam, AD, Hines, A, Viant, MR. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem. 2008; 372, 204212.CrossRefGoogle ScholarPubMed
16. Beckonert, O, Keun, HC, Ebbels, TM, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007; 2, 26922703.CrossRefGoogle ScholarPubMed
17. Want, EJ, O’Maille, G, Smith, CA, et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem. 2006; 78, 743752.CrossRefGoogle ScholarPubMed
18. Bruce, SJ, Tavazzi, I, Parisod, V, et al. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem. 2009; 81, 32853296.CrossRefGoogle ScholarPubMed
19. Gika, HG, Theodoridis, G, Extance, J, Edge, AM, Wilson, ID. High temperature-ultra performance liquid chromatography-mass spectrometry for the metabonomic analysis of Zucker rat urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2008; 871, 279287.CrossRefGoogle ScholarPubMed
20. Wu, N, Clausen, AM. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. J Sep Sci. 2007; 30, 11671182.CrossRefGoogle ScholarPubMed
21. Dettmer, K, Aronov, PA, Hammock, BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007; 26, 5178.CrossRefGoogle ScholarPubMed
22. Dunn, WB. Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol. 2008; 5, 011001.CrossRefGoogle ScholarPubMed
23. Robertson, DG and Lindaon, J. Metabonomics in Toxicity Assessment . 2005. CRC Press: Boca Raton, FL.CrossRefGoogle Scholar
24. Edwards, J. Principles of NMR [online]. Retrieved 3 March 2013 from Scholar
25. Lenz, EM, Wilson, ID. Analytical strategies in metabonomics. J Proteome Res. 2007; 6, 443458.CrossRefGoogle ScholarPubMed
26. Issaq, HJ, Van, QN, Waybright, TJ, Muschik, GM, Veenstra, TD. Analytical and statistical approaches to metabolomics research. J Sep Sci. 2009; 32, 21832199.CrossRefGoogle ScholarPubMed
27. Dumas, ME, Maibaum, EC, Teague, C, et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem. 2006; 78, 21992208.CrossRefGoogle ScholarPubMed
28. Scheltema, R, Decuypere, S, Dujardin, J, et al. Simple data-reduction method for high-resolution LC-MS data in metabolomics. Bioanalysis. 2009; 1, 15511557.CrossRefGoogle ScholarPubMed
29. Katajamaa, M, Oresic, M. Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics. 2005; 6, 179.CrossRefGoogle ScholarPubMed
30. Skov, T, van den Berg, F, Tomasi, G, Bro, R. Automated alignment of chromatographic data. J Chemom. 2006; 20, 484497.CrossRefGoogle Scholar
31. Forshed, J, Torgrip, RJ, Aberg, KM, et al. A comparison of methods for alignment of NMR peaks in the context of cluster analysis. J Pharm Biomed Anal. 2005; 38, 824832.CrossRefGoogle ScholarPubMed
32. Evans, AM, Mitchell, MW, Dai, H and DeHaven, C. Categorizing ion – features in liquid chromatography/mass spectrometry metobolomics data. J Postgenom. 2012; 2:3.Google Scholar
33. Wishart, DS, Knox, C, Guo, AC, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009; 37 (Database issue) D603D610.CrossRefGoogle ScholarPubMed
34. Fahy, E, Subramaniam, S, Murphy, RC, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009; 50(Suppl.), S9S14.CrossRefGoogle ScholarPubMed
35. Smith, CA, O’Maille, G, Want, EJ, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005; 27, 747751.CrossRefGoogle ScholarPubMed
36. Oba, S, Sato, MA, Takemasa, I, et al. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics. 2003; 19, 20882096.CrossRefGoogle ScholarPubMed
37. Ouyang, M, Welsh, WJ, Georgopoulos, P. Gaussian mixture clustering and imputation of microarray data. Bioinformatics. 2004; 20, 917923.CrossRefGoogle ScholarPubMed
38. Sehgal, MS, Gondal, I, Dooley, LS. Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data. Bioinformatics. 2005; 21, 24172423.CrossRefGoogle ScholarPubMed
39. Jolliffe, IT. Principal Component Analysis. 1986. Springer-Verlag: New York.CrossRefGoogle ScholarPubMed
40. Smilde, AK, Jansen, JJ, Hoefsloot, HC, et al. ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics. 2005; 21, 30433048.CrossRefGoogle ScholarPubMed
41. Beckonert, O, Bollard, ME, Ebbels, T, et al. NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches. Analytica Chimica Acta. 2003; 490, 315.CrossRefGoogle Scholar
42. Krumsiek, J, Suhre, K, Illig, T, Adamski, J, Theis, FJ. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol. 2011; 5, 21.CrossRefGoogle ScholarPubMed
43. Krumsiek, J, Suhre, K, Evans, AM, et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genet. 2012; 8, e1003005.CrossRefGoogle ScholarPubMed
44. Shin, SY, Fauman, EB, Petersen, AK, et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014; 46, 543550.CrossRefGoogle ScholarPubMed
45. Truong, Y, Lin, X, Beecher, C. Learning a complex metabolomic dataset using random forests and support vector machines. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004; Seattle, WA, USA.Google Scholar
46. Fonville, JM, Richards, SE, Barton, RH, et al. The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemom. 2010; 24, 636649.CrossRefGoogle Scholar
47. Trygg, J, Wold, S. Orthogonal projections to latent structures (O-PLS). J Chemom. 2002; 16, 119128.CrossRefGoogle Scholar
48. Shi, H, Vigneau-Callahan, KE, Shestopalov, AI, et al. Characterization of diet-dependent metabolic serotypes: primary validation of male and female serotypes in independent cohorts of rats. J Nutr. 2002; 132, 10391046.Google ScholarPubMed
49. Shi, H, Vigneau-Callahan, KE, Shestopalov, AI, et al. Characterization of diet-dependent metabolic serotypes: proof of principle in female and male rats. J Nutr. 2002; 132, 10311038.Google ScholarPubMed
50. Skol, AD, Scott, LJ, Abecasis, GR, Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006; 38, 209213.CrossRefGoogle ScholarPubMed
51. Wang, TJ, Larson, MG, Vasan, RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011; 17, 448453.CrossRefGoogle ScholarPubMed
52. Cox, J, Williams, S, Grove, K, Lane, RH, Aagaard-Tillery, KM. A maternal high-fat diet is accompanied by alterations in the fetal primate metabolome. Am J Obstet Gynecol. 2009; 201, 281.e281281.e289.CrossRefGoogle ScholarPubMed
53. Kennedy, ET, Ohls, J, Carlson, S, Fleming, K. The Healthy Eating Index: design and applications. J Am Diet Assoc. 1995; 95, 11031108.CrossRefGoogle ScholarPubMed
54. Guertin, KA, Moore, SC, Sampson, JN, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Nat Genet. 2014; 100, 208217.Google ScholarPubMed
55. Menni, C, Zhai, G, Macgregor, A, et al. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics. 2013; 9, 506514.CrossRefGoogle ScholarPubMed
56. Altmaier, E, Kastenmuller, G, Romisch-Margl, W, et al. Questionnaire-based self-reported nutrition habits associate with serum metabolism as revealed by quantitative targeted metabolomics. Eur J Epidemiol. 2011; 26, 145156.CrossRefGoogle ScholarPubMed
57. Floegel, A, von Ruesten, A, Drogan, D, et al. Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam. Eur J Clin Nutr. 2013; 67, 11001108.CrossRefGoogle ScholarPubMed
58. Steffen, LM, Zheng, Y, Steffen, BT. Metabolomic biomarkers reflect usual dietary pattern: a review. Curr Nutr Rep. 2014; 3, 6268.CrossRefGoogle Scholar
59. Wang, Z, Klipfell, E, Bennett, BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472, 5763.CrossRefGoogle ScholarPubMed
60. Ridaura, VK, Faith, JJ, Rey, FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013; 341, 1241214.CrossRefGoogle ScholarPubMed
61. Vrieze, A, Van Nood, E, Holleman, F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012; 143, 913916, e917.CrossRefGoogle ScholarPubMed
62. Llorach, R, Urpi-Sarda, M, Jauregui, O, Monagas, M, Andres-Lacueva, C. An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteome Res. 2009; 8, 50605068.CrossRefGoogle ScholarPubMed
63. van Velzen, EJ, Westerhuis, JA, van Duynhoven, JP, et al. Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. J Proteome Res. 2009; 8, 33173330.CrossRefGoogle ScholarPubMed
64. Johansson-Persson, A, Barri, T, Ulmius, M, Onning, G, Dragsted, LO. LC-QTOF/MS metabolomic profiles in human plasma after a 5-week high dietary fiber intake. Anal Bioanal Chem. 2013; 405, 47994809.CrossRefGoogle ScholarPubMed
65. Gurdeniz, G, Rago, D, Bendsen, NT, et al. Effect of trans fatty acid intake on LC-MS and NMR plasma profiles. PLoS One. 2013; 8, e69589.CrossRefGoogle ScholarPubMed
66. Schmidt, MD, Dwyer, T, Magnussen, CG, Venn, AJ. Predictive associations between alternative measures of childhood adiposity and adult cardio-metabolic health. Int J Obes (Lond). 2011; 35, 3845.CrossRefGoogle ScholarPubMed
67. Bondia-Pons, I, Nordlund, E, Mattila, I, et al. Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread. Nutr J. 2011; 10, 116.CrossRefGoogle ScholarPubMed
68. Krug, S, Kastenmuller, G, Stuckler, F, et al. The dynamic range of the human metabolome revealed by challenges. FASEB J. 2012; 26, 26072619.CrossRefGoogle ScholarPubMed
69. Socha, P, Grote, V, Gruszfeld, D, et al. Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011; 94(6 Suppl.), 1776s1784s.CrossRefGoogle ScholarPubMed
70. O’Sullivan, A, He, X, McNiven, EM, et al. Early diet impacts infant rhesus gut microbiome, immunity, and metabolism. J Proteome Res. 2013; 12, 28332845.CrossRefGoogle ScholarPubMed
71. Herman, MA, She, P, Peroni, OD, Lynch, CJ, Kahn, BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010; 285, 1134811356.CrossRefGoogle ScholarPubMed
72. Lu, J, Xie, G, Jia, W, Jia, W. Insulin resistance and the metabolism of branched-chain amino acids. Front Med. 2013; 7, 5359.CrossRefGoogle Scholar
73. Bertram, HC, Hoppe, C, Petersen, BO, et al. An NMR-based metabonomic investigation on effects of milk and meat protein diets given to 8-year-old boys. Br J Nutr. 2007; 97, 758763.CrossRefGoogle ScholarPubMed
74. Scheepers, PT. The use of biomarkers for improved retrospective exposure assessment in epidemiological studies: summary of an ECETOC workshop. Biomarkers. 2008; 13, 734748.CrossRefGoogle Scholar
75. Scholtens, DM, Muehlbauer, MJ, Daya, NR, et al. Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care. 2014; 37, 158166.CrossRefGoogle ScholarPubMed
76. Xu, T, Holzapfel, C, Dong, X, et al. Effects of smoking and smoking cessation on human serum metabolite profile: results from the KORA cohort study. BMC Med. 2013; 11, 60.CrossRefGoogle ScholarPubMed
77. Oken, E, Levitan, EB, Gillman, MW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes (Lond). 2008; 32, 201210.CrossRefGoogle ScholarPubMed
78. Enea, C, Seguin, F, Petitpas-Mulliez, J, et al. (1)H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal Bioanal Chem. 2010; 396, 11671176.CrossRefGoogle ScholarPubMed
79. Lewis, GD, Farrell, L, Wood, MJ, et al. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010; 2, 33ra37.CrossRefGoogle ScholarPubMed
80. Netzer, M, Weinberger, KM, Handler, M, et al. Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers. J Clin Bioinforma. 2011; 1, 34.CrossRefGoogle ScholarPubMed
81. Pechlivanis, A, Kostidis, S, Saraslanidis, P, et al. (1)H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine. J Proteome Res. 2010; 9, 64056416.CrossRefGoogle ScholarPubMed
82. Pechlivanis, A, Kostidis, S, Saraslanidis, P, et al. 1H NMR study on the short- and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum. J Proteome Res. 2013; 12, 470480.CrossRefGoogle Scholar
83. Roberts, LD, Bostrom, P, O'Sullivan, JF, et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 2014; 19, 96108.CrossRefGoogle ScholarPubMed
84. Huffman, KM, Slentz, CA, Bateman, LA, et al. Exercise-induced changes in metabolic intermediates, hormones, and inflammatory markers associated with improvements in insulin sensitivity. Diabetes Care. 2011; 34, 174176.CrossRefGoogle ScholarPubMed
85. Yan, B, , AJ, Wang, G, et al. Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. J Appl Physiol (1985). 2009; 106, 531538.CrossRefGoogle ScholarPubMed
86. Brochu, M, Tchernof, A, Dionne, IJ, et al. What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J Clin Endocrinol Metab. 2001; 86, 10201025.Google ScholarPubMed
87. Karelis, AD. Metabolically healthy but obese individuals. Lancet. 2008; 372, 12811283.CrossRefGoogle ScholarPubMed
88. Karelis, AD, Faraj, M, Bastard, JP, et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 2005; 90, 41454150.CrossRefGoogle ScholarPubMed
89. Thomas, EL, Parkinson, JR, Frost, GS, et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring). 2012; 20, 7687.CrossRefGoogle ScholarPubMed
90. Oken, E, Kleinman, KP, Rich-Edwards, J, Gillman, MW. A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr. 2003; 3, 6.CrossRefGoogle ScholarPubMed
91. Horgan, RP, Broadhurst, DI, Walsh, SK, et al. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J Proteome Res. 2011; 10, 36603673.CrossRefGoogle ScholarPubMed
92. Ivorra, C, Garcia-Vicent, C, Chaves, FJ, et al. Metabolomic profiling in blood from umbilical cords of low birth weight newborns. J Transl Med. 2012; 10, 142.CrossRefGoogle ScholarPubMed
93. Alexandre-Gouabau, MC, Courant, F, Moyon, T, et al. Maternal and cord blood LC-HRMS metabolomics reveal alterations in energy and polyamine metabolism, and oxidative stress in very-low birth weight infants. J Proteome Res. 2013; 12, 27642778.CrossRefGoogle ScholarPubMed
94. Tea, I, Le Gall, G, Kuster, A, et al. 1H-NMR-based metabolic profiling of maternal and umbilical cord blood indicates altered materno-foetal nutrient exchange in preterm infants. PLoS One. 2012; 7, e29947.CrossRefGoogle ScholarPubMed
95. Favretto, D, Cosmi, E, Ragazzi, E, et al. Cord blood metabolomic profiling in intrauterine growth restriction. Anal Bioanal Chem. 2012; 402, 11091121.CrossRefGoogle ScholarPubMed
96. Morris, C, O’Grada, C, Ryan, M, et al. The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc. 2012; 71, 634638.CrossRefGoogle ScholarPubMed
97. McCormack, SE, Shaham, O, McCarthy, MA, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013; 8, 5261.CrossRefGoogle ScholarPubMed
98. Perng, WGM, Fleisch, AF, Michalek, RD, et al. Metabolomic profiles of childhood obesity. Early Nutrition Conference 2014.Google Scholar
99. Sumner, LW, Amberg, A, Barrett, D, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007; 3, 211221.CrossRefGoogle Scholar
100. Yousri, NA, Kastenmuller, G, Gieger, C, et al. Long term conservation of human metabolic phenotypes and link to heritability. Metabolomics. 2014; 10, 10051017.CrossRefGoogle ScholarPubMed
101. Luan, H, Meng, N, Liu, P, et al. Pregnancy-induced metabolic phenotype variations in maternal plasma. J Proteome Res. 2014; 13, 15271536.CrossRefGoogle ScholarPubMed
102. Graca, G, Goodfellow, BJ, Barros, AS, et al. UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers. Mol Biosyst. 2012; 8, 12431254.CrossRefGoogle ScholarPubMed
103. Graca, G, Duarte, IF, Barros, AS, et al. Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study. J Proteome Res. 2010; 9, 60166024.CrossRefGoogle ScholarPubMed
104. Horgan, RP, Broadhurst, DI, Dunn, WB, et al. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta. 2010; 31, 893901.CrossRefGoogle ScholarPubMed
105. Heazell, AE, Brown, M, Dunn, WB, et al. Analysis of the metabolic footprint and tissue metabolome of placental villous explants cultured at different oxygen tensions reveals novel redox biomarkers. Placenta. 2008; 29, 691698.CrossRefGoogle ScholarPubMed
106. Dunn, WB, Brown, M, Worton, SA, et al. Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta. 2009; 30, 974980.CrossRefGoogle ScholarPubMed
107. Tissot van Patot, MC, Murray, AJ, Beckey, V, et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. Am J Physiol Regul Integr Comp Physiol. 2010; 298, R166R172.CrossRefGoogle ScholarPubMed
108. Kurland, IJ, Accili, D, Burant, C, et al. Application of combined omics platforms to accelerate biomedical discovery in diabesity. Ann NY Acad Sci. 2013; 1287, 116.CrossRefGoogle ScholarPubMed
109. Putignani, L, Del Chierico, F, Petrucca, A, Vernocchi, P, Dallapiccola, B. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res. 2014; 76, 210.CrossRefGoogle ScholarPubMed
110. Wurtz, P, Kangas, AJ, Soininen, P, et al. Lipoprotein subclass profiling reveals pleiotropy in the genetic variants of lipid risk factors for coronary heart disease: a note on Mendelian randomization studies. J Am Coll Cardiol. 2013; 62, 19061908.CrossRefGoogle ScholarPubMed
111. Timpson, NJ, Nordestgaard, BG, Harbord, RM, et al. C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int J Obes (Lond). 2011; 35, 300308.CrossRefGoogle ScholarPubMed
112. Prentice, KJ, Luu, L, Allister, EM, et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces beta cell dysfunction. Cell Metab. 2014; 19, 653666.CrossRefGoogle ScholarPubMed
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Metabolomics in the developmental origins of obesity and its cardiometabolic consequences
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Metabolomics in the developmental origins of obesity and its cardiometabolic consequences
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Metabolomics in the developmental origins of obesity and its cardiometabolic consequences
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *