Skip to main content Accessibility help

Antenatal glucocorticoids: where are we after forty years?

  • C. J. D. McKinlay (a1), S. R. Dalziel (a2) and J. E. Harding (a1)


Since their introduction more than forty years ago, antenatal glucocorticoids have become a cornerstone in the management of preterm birth and have been responsible for substantial reductions in neonatal mortality and morbidity. Clinical trials conducted over the past decade have shown that these benefits may be increased further through administration of repeat doses of antenatal glucocorticoids in women at ongoing risk of preterm and in those undergoing elective cesarean at term. At the same time, a growing body of experimental animal evidence and observational data in humans has linked fetal overexposure to maternal glucocorticoids with increased risk of cardiovascular, metabolic and other disorders in later life. Despite these concerns, and somewhat surprisingly, there has been little evidence to date from randomized trials of longer-term harm from clinical doses of synthetic glucocorticoids. However, with wider clinical application of antenatal glucocorticoid therapy there has been greater need to consider the potential for later adverse effects. This paper reviews current evidence for the short- and long-term health effects of antenatal glucocorticoids and discusses the apparent discrepancy between data from randomized clinical trials and other studies.


Corresponding author

*Address for correspondence: Professor J. E. Harding, Liggins Institute, The University of Auckland, Private Bag 92019, Victoria St West, Auckland 1142, New Zealand. (Email


Hide All
1. National Institutes of Health. Effect of corticosteroids for fetal maturation on perinatal outcomes. Consens Statement. 1994; 12, 124.
2. Roberts, D, Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006; CD004454.
3. Liggins, GC, Howie, RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972; 50, 515525.
4. Jobe, AH, Mitchell, BR, Gunkel, JH. Beneficial effects of the combined use of prenatal corticosteroids and postnatal surfactant on preterm infants. Am J Obstet Gynecol. 1993; 168, 508513.
5. Sen, S, Reghu, A, Ferguson, SD. Efficacy of a single dose of antenatal steroid in surfactant-treated babies under 31 weeks’ gestation. J Matern Fetal Neonatal Med. 2002; 12, 298303.
6. Kari, MA, Hallman, M, Eronen, M, et al. Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant: a randomized placebo-controlled multicenter study. Pediatrics. 1994; 93, 730736.
7. Andrews, EB, Marcucci, G, White, A, Long, W. Associations between use of antenatal corticosteroids and neonatal outcomes within the Exosurf Neonatal Treatment Investigational New Drug Program. Am J Obstet Gynecol. 1995; 173, 290295.
8. Stutchfield, P, Whitaker, R, Russell, I. Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. BMJ. 2005; 331, 662.
9. Ahmed, MR, Sayed Ahmed, WA, Mohammed, TY. Antenatal steroids at 37 weeks, does it reduce neonatal respiratory morbidity? A randomized trial. J Matern Fetal Neonatal Med. 2014; September 22, 15 [Epud ahead of print].
10. Porto, AM, Coutinho, IC, Correia, JB, Amorim, MM. Effectiveness of antenatal corticosteroids in reducing respiratory disorders in late preterm infants: randomised clinical trial. BMJ. 2011; 342. d1696.
11. Roberts, D. Antenatal corticosteroids to reduce neonatal morbidity and mortality. 2010. Royal College of Obstetricians and Gynaecologists: London, UK.
12. Aiken, CEM, Fowden, AL, Smith, GCS. Antenatal glucocorticoids prior to cesarean delivery at term. JAMA Pediatr. 2014; 168, 507508.
13. Reynolds, R, Seckl, J. Antenatal glucocorticoid treatment: are we doing harm to term babies? J Clin Endocrinol Metab. 2012; 97, 34573459.
14. Stutchfield, PR, Whitaker, R, Gliddon, AE, et al. Behavioural, educational and respiratory outcomes of antenatal betamethasone for term caesarean section (ASTECS trial). Arch Dis Child Fetal Neonatal Ed. 2013; 98, F195F200.
15. Khazardoust, SJP, Salmanian, B, Zandevakil, F, et al. A clinical randomized trial on endocervical inflammatory cytokines and betamethasone in prime-gravid pregnant women at risk of preterm labor. Iran J Immunol. 2012; 9, 199207.
16. Abbasi, S, Oxford, C, Gerdes, J, Sehdev, H, Ludmir, J. Antenatal corticosteroids prior to 24 weeks’ gestation and neonatal outcome of extremely low birth weight infants. Am J Perinatol. 2010; 27, 6166.
17. Costeloe, K, Hennessy, E, Gibson, A, Marlow, N, Wilkinson, AR. The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics. 2000; 106, 659671.
18. Foix-L’Helias, L, Marret, S, Ancel, PY, et al. Impact of the use of antenatal corticosteroids on mortality, cerebral lesions and 5-year neurodevelopmental outcomes of very preterm infants: the EPIPAGE cohort study. BJOG. 2008; 115, 275282.
19. Manktelow, BN, Lal, MK, Field, DJ, Sinha, SK. Antenatal corticosteroids and neonatal outcomes according to gestational age: a cohort study. Arch Dis Child Fetal Neonatal Ed. 2010; 95, F95F98.
20. Wong, D, Abdel-Latif, M, Kent, A. Antenatal steroid exposure and outcomes of very premature infants: a regional cohort study. Arch Dis Child Fetal Neonatal Ed. 2014; 99, F12F20.
21. Ballard, PL, Ertsey, R, Gonzales, LW, Gonzales, J. Transcriptional regulation of human pulmonary surfactant proteins SP-B and SP-C by glucocorticoids. Am J Respir Cell Mol Biol. 1996; 14, 599607.
22. Liley, HG, White, RT, Warr, RG, et al. Regulation of messenger RNAs for the hydrophobic surfactant proteins in human lung. J Clin Invest. 1989; 83, 11911197.
23. Willet, KE, Jobe, AH, Ikegami, M, Kovar, J, Sly, PD. Lung morphometry after repetitive antenatal glucocorticoid treatment in preterm sheep. Am J Respir Crit Care Med. 2001; 163, 14371443.
24. Harding, JE, Pang, J, Knight, DB, Liggins, GC. Do antenatal corticosteroids help in the setting of preterm rupture of membranes? Am J Obstet Gynecol. 2001; 184, 131139.
25. Yoo, HS, Chang, YS, Kim, JK, et al. Antenatal betamethasone attenuates intrauterine infection-aggravated hyperoxia-induced lung injury in neonatal rats. Pediatr Res. 2013; 73, 726733.
26. Khazardoust, S, Javadian, P, Salmanian, B, et al. A clinical randomized trial on endocervical inflammatory cytokines and betamethasone in prime-gravid pregnant women at risk of preterm labor. Iran J Immunol. 2012; 9, 199207.
27. Ahn, HM, Park, EA, Cho, SJ, Kim, YJ, Park, HS. The association of histological chorioamnionitis and antenatal steroids on neonatal outcome in preterm infants born at less than thirty-four weeks’ gestation. Neonatology. 2012; 102, 259264.
28. Collins, JJ, Kunzmann, S, Kuypers, E, et al. Antenatal glucocorticoids counteract LPS changes in TGF-beta pathway and caveolin-1 in ovine fetal lung. Am J Physiol Lung Cell Mol Physiol. 2013; 304, L438L444.
29. Kuypers, E, Jellema, RK, Ophelders, DR, et al. Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep. PLoS One. 2013; 8, e81644.
30. Ballabh, P, Lo, ES, Kumari, J, et al. Pharmacokinetics of betamethasone in twin and singleton pregnancy. Clin Pharmacol Ther. 2002; 71, 3945.
31. Della Torre, M, Hibbard, JU, Jeong, H, Fischer, JH. Betamethasone in pregnancy: influence of maternal body weight and multiple gestation on pharmacokinetics. Am J Obstet Gynecol. 2010; 203, 254.e1254.e12.
32. Gyamfi, C, Mele, L, Wapner, RJ, et al. The effect of plurality and obesity on betamethasone concentrations in women at risk for preterm delivery. Am J Obstet Gynecol. 2010; 203, 219.e1219.e5.
33. Edwards, A, Baker, LS, Wallace, EM. Changes in fetoplacental vessel flow velocity waveforms following maternal administration of betamethasone. Ultrasound Obst Gyn. 2002; 20, 240244.
34. Edwards, A, Baker, LS, Wallace, EM. Changes in umbilical artery flow velocity waveforms following maternal administration of betamethasone. Placenta. 2003; 24, 1216.
35. Wallace, EM, Baker, LS. Effect of antenatal betamethasone administration on placental vascular resistance. Lancet. 1999; 353, 14041407.
36. Miller, SL, Supramaniam, VG, Jenkin, G, Walker, DW, Wallace, EM. Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. Am J Obstet Gynecol. 2009; 201, 613.e1613.e8.
37. Miller, SL, Chai, M, Loose, J, et al. The effects of maternal betamethasone administration on the intrauterine growth-restricted fetus. Endocrinology. 2007; 148, 12881295.
38. Chang, YL, Chang, SD, Chao, AS, et al. Fetal hemodynamic changes following maternal betamethasone administration in monochorionic twin pregnancies featuring one twin with selective growth restriction and abnormal umbilical artery Doppler. J Obstet Gynecol Res. 2011; 37, 16711676.
39. Torrance, HL, Derks, JB, Scherjon, SA, Wijnberger, LD, Visser, GH. Is antenatal steroid treatment effective in preterm IUGR fetuses? Acta Obstet Gynecol Scand. 2009; 88, 10681073.
40. Hodges, RJ, Wallace, EM. Mending a growth-restricted fetal heart: should we use glucocorticoids? J Matern Fetal Neonatal Med. 2012; 25, 21492153.
41. Morrison, JL, Botting, KJ, Soo, PS, et al. Antenatal steroids and the IUGR fetus: are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses? J Pregnancy. 2012; 2012, Article ID 839656.
42. Velayo, C, Ito, T, Dong, Y, et al. Molecular patterns of neurodevelopmental preconditioning: a study of the effects of antenatal steroid therapy in a protein-restriction mouse model. ISRN Obstet Gynecol. 2014; 2014, Article ID 193816.
43. Schaap, AH, Wolf, H, Bruinse, HW, et al. Effects of antenatal corticosteroid administration on mortality and long-term morbidity in early preterm, growth-restricted infants. Obstet Gynecol. 2001; 97, 954960.
44. Schutte, MF, Treffers, PE, Koppe, JG, Breur, W. Influence of betamethasone and orciprenaline on the incidence of respiratory-distress syndrome in the newborn after preterm labor. BJOG. 1980; 87, 127131.
45. Sutherland, AE, Crossley, KJ, Allison, BJ, et al. The effects of intrauterine growth restriction and antenatal glucocorticoids on ovine fetal lung development. Pediatr Res. 2012; 71, 689696.
46. Refuerzo, JS, Garg, A, Rech, B, et al. Continuous glucose monitoring in diabetic women following antenatal corticosteroid therapy: a pilot study. Am J Perinatol. 2012; 29, 335337.
47. Amorim, MM, Santos, LC, Faundes, A. Corticosteroid therapy for prevention of respiratory distress syndrome in severe preeclampsia. Am J Obstet Gynecol. 1999; 180, 12831288.
48. Mastrobattista, JM, Patel, N, Monga, M. Betamethasone alteration of the one-hour glucose challenge test in pregnancy. J Reprod Med. 2001; 46, 8386.
49. Mathiesen, ER, Christensen, ABL, Hellmuth, E, et al. Insulin dose during glucocorticoid treatment for fetal lung maturation in diabetic pregnancy: test of analgoritm. Acta Obstet Gynecol Scand. 2002; 81, 835839.
50. Wapner, RJ, Sorokin, Y, Thom, EA, et al. Single versus weekly courses of antenatal corticosteroids: evaluation of safety and efficacy. Am J Obstet Gynecol. 2006; 195, 633642.
51. Carlson, KS, Smith, BT, Post, M. Insulin acts on the fibroblast to inhibit glucocorticoid stimulation of lung maturation. J Appl Physiol. 1984; 57, 15771579.
52. Dekowski, SA, Snyder, JM. The combined effects of insulin and cortisol on surfactant protein Messenger-Rna levels. Pediatr Res. 1995; 38, 513521.
53. McGillick, EV, Morrison, JL, McMillen, IC, Orgeig, S. Intrafetal glucose infusion alters glucocorticoid signalling and reduces surfactant protein mRNA expression in the lung of the late gestation sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2014; 307, R538R545.
54. Rehan, V, Moddemann, D, Casiro, O. Outcome of very-low-birth-weight (<1,500 grams) infants born to mothers with diabetes. Clin Pediatr. 2002; 41, 481491.
55. Bental, Y, Reichman, B, Shiff, Y, et al. Impact of maternal diabetes mellitus on mortality and morbidity of preterm infants (24–33 weeks’ gestation). Pediatrics. 2011; 128, e848e855.
56. Kalra, S, Kalra, B, Gupta, Y. Glycemic management after antenatal corticosteroid therapy. N Am J Med Sci. 2014; 6, 7176.
57. Liggins, GC. The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev. 1994; 6, 141150.
58. Fowden, AL, Li, J, Forhead, AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc. 1998; 57, 113122.
59. Challis, JRG, Matthews, SG, Gibb, W, Lye, SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000; 21, 514550.
60. Fowden, AL, Szemere, J, Hughes, P, Gilmour, RS, Forhead, AJ. The effects of cortisol on the growth rate of the sheep fetus during late gestation. J Endocrinol. 1996; 151, 97105.
61. Venkatesh, VC, Ballard, PL. Glucocorticoids and gene expression. Am J Respir Cell Mol Biol. 1991; 4, 301303.
62. Venkatesh, VC, Iannuzzi, DM, Ertsey, R, Ballard, PL. Differential glucocorticoid regulation of the pulmonary hydrophobic surfactant proteins SP-B and SP-C. Am J Respir Cell Mol Biol. 1993; 8, 222228.
63. Ballard, PL. Scientific rationale for the use of antenatal glucocorticoids to promote fetal development. Pediatr Rev. 2000; 1, E83E90.
64. Li, J, Saunders, JC, Fowden, AL, Dauncey, MJ, Gilmour, RS. Transcriptional regulation of insulin-like growth factor-II gene expression by cortisol in fetal sheep during late gestation. J Biol Chem. 1998; 273, 1058610593.
65. Olson, AL, Robillard, JE, Kisker, CT, Smith, BA, Perlman, S. Negative regulation of angiotensinogen gene expression by glucocorticoids in fetal sheep liver. Pediatr Res. 1991; 30, 256260.
66. Pierce, RA, Mariencheck, WI, Sandefur, S, Crouch, EC, Parks, WC. Glucocorticoids upregulate tropoelastin expression during late stages of fetal lung development. Am J Physiol. 1995; 268(Pt 1), L491L500.
67. Champigny, G, Voilley, N, Lingueglia, E, et al. Regulation of expression of the lung amiloride-sensitive Na+ channel by steroid hormones. Embo J. 1994; 13, 21772181.
68. Barquin, N, Ciccolella, DE, Ridge, KM, Sznajder, JI. Dexamethasone upregulates the Na-K-ATPase in rat alveolar epithelial cells. Am J Physiol. 1997; 273(Pt 1), L825L830.
69. Chen, YZ, Qiu, J. Possible genomic consequence of nongenomic action of glucocorticoids in neural cells. News Physiol Sci. 2001; 16, 292296.
70. Buttgereit, F, Brand, MD, Burmester, GR. Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochem Pharmacol. 1999; 58, 363368.
71. Du, J, Wang, Y, Hunter, R, et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci USA. 2009; 106, 35433548.
72. Speirs, HJ, Seckl, JR, Brown, RW. Ontogeny of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol. 2004; 181, 105116.
73. Wyrwoll, CS, Holmes, MC, Seckl, JR. 11beta-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol. 2011; 32, 265286.
74. Trahair, JF, Sangild, PT. Systemic and luminal influences on the perinatal development of the gut. Equine Vet J Suppl. 1997; 24, 4050.
75. Ballard, PL. Hormones and lung maturation. 1986. Springer-Verlag: Berlin.
76. Haas, DM, Dantzer, J, Lehmann, AS, et al. The impact of glucocorticoid polymorphisms on markers of neonatal respiratory disease after antenatal betamethasone administration. Am J Obstet Gynecol. 2013; 208, 215.e1215.e6.
77. Crowther, CA, Hiller, JE, Doyle, LW, Robinson, JS. Repeat doses of prenatal corticosteroids for women at risk of preterm birth: the ACTORDS trial 12 month follow up. Proceedings of Perinatal Society of Australia and New Zealand 10th Annual Congress Perth, 3–6 April, 2006.
78. Peltoniemi, O, Kari, M, Tammela, O, et al. Randomized trial of a single repeat dose of prenatal betamethasone treatment in imminent preterm birth. Pediatrics. 2007; 119, 290298.
79. Smith, LM, Altamirano, AK, Ervin, MG, Seidner, SR, Jobe, AH. Prenatal glucocorticoid exposure and postnatal adaptation in premature newborn baboons ventilated for six days. Am J Obstet Gynecol. 2004; 191, 16881694.
80. Stonestreet, BS, Petersson, KH, Sadowska, GB, Pettigrew, KD, Patlak, CS. Antenatal steroids decrease blood-brain barrier permeability in the ovine fetus. Am J Physiol. 1999; 276(Pt 2), R283R289.
81. Liu, J, Feng, ZC, Yin, XJ, et al. The role of antenatal corticosteroids for improving the maturation of choroid plexus capillaries in fetal mice. Eur J Pediatr. 2008; 167, 12091212.
82. Ikegami, M, Polk, D, Jobe, A. Minimum interval from fetal betamethasone treatment to postnatal lung responses in preterm lambs. Am J Obstet Gynecol. 1996; 174, 14081413.
83. Ikegami, M, Polk, DH, Jobe, AH, et al. Effect of interval from fetal corticosteriod treatment to delivery on postnatal lung function of preterm lambs. J Appl Physiol. 1996; 80, 591597.
84. Polglase, GR, Nitsos, I, Jobe, AH, et al. Maternal and intra-amniotic corticosteroid effects on lung morphometry in preterm lambs. Pediatr Res. 2007; 62, 3236.
85. Pinkerton, KE, Willet, KE, Peake, JL, et al. Prenatal glucocorticoid and T4 effects on lung morphology in preterm lambs. Am J Respir Crit Care Med. 1997; 156(Pt 1), 624630.
86. Ballard, PL, Ning, Y, Polk, D, Ikegami, M, Jobe, A. Glucorticoid regulation of surfactant components in immature lambs. Am J Physiol. 1997; 273(Pt 1), L1048L1057.
87. Moss, TJ, Nitsos, I, Knox, CL, et al. Ureaplasma colonization of amniotic fluid and efficacy of antenatal corticosteroids for preterm lung maturation in sheep. Am J Obstet Gynecol. 2009; 200(1), 96.e196.e6.
88. Blanford, AT, Murphy, BE. In vitro metabolism of prednisolone, dexamethasone, betamethasone, and cortisol by the human placenta. Am J Obstet Gynecol. 1977; 127, 264267.
89. Ballard, PL, Granberg, P, Ballard, RA. Glucocorticoid levels in maternal and cord serum after prenatal betamethasone therapy to prevent respiratory distress syndrome. J Clin Invest. 1975; 56, 15481554.
90. Anderson, AB, Gennser, G, Jeremy, JY, et al. Placental transfer and metabolism of betamethasone in human pregnancy. Obstet Gynecol. 1977; 49, 471474.
91. Brownfoot, FC, Crowther, CA, Middleton, P. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2008; CD006764.
92. Jobe, AH, Soll, RF. Choice and dose of corticosteroid for antenatal treatments. Am J Obstet Gynecol. 2004; 190, 878881.
93. Fonseca, L, Alcorn, JL, Ramin, SM, Vidaeff, AC. Comparison of the effects of betamethasone and dexamethasone on surfactant protein A mRNA expression in human lung cells. J Matern Fetal Neonatal Med. 2014; 15.
94. Crowther, CA, Harding, JE, Middleton, PF, et al. Australasian randomised trial to evaluate the role of maternal intramuscular dexamethasone versus betamethasone prior to preterm birth to increase survival free of childhood neurosensory disability (A*STEROID): study protocol. BMC Pregnancy Childbirth. 2013; 13, 104.
95. Howie, RN, Liggins, GC. Clinical trial of antepartum betamethasone therapy for prevention of respiratory distress in pre-term infants. In Pre-term labour: Proceedings of the Fifth Study Group of the Royal College of Obstetricians and Gynaecologists (eds. Anderson A, Beard R, Brundell J, Dunn P), pp. 281289. London: Royal College of Obstetricians and Gynaecologists; 1977.
96. Jobe, AH, Nitsos, I, Pillow, JJ, et al. Betamethasone dose and formulation for induced lung maturation in fetal sheep. Am J Obstet Gynecol. 2009; 201, 611.e1611.e7.
97. Howie, RN, Liggins, GC. Prevention of respiratory distress syndrome in premature infants by antepartum glucocorticoid treatment. In Respiratory distress syndrome (eds. Villee C, Villee D, Zuckerman J), 1973; pp. 369380. Academic Press: London.
98. Jobe, AH, Newnham, J, Willet, K, Sly, P, Ikegami, M. Fetal versus maternal and gestational age effects of repetitive antenatal glucocorticoids. Pediatrics. 1998; 102, 11161125.
99. Walther, FJ, Jobe, AH, Ikegami, M. Repetitive prenatal glucocorticoid therapy reduces oxidative stress in the lungs of preterm lambs. J Appl Physiol. 1998; 85, 273278.
100. Ikegami, M, Jobe, A, Newnham, J, et al. Repetitive prenatal glucocorticoids improve lung function and decrease growth in preterm lambs. Am J Respir Crit Care Med. 1997; 156, 178184.
101. Pua, ZJ, Stonestreet, BS, Cullen, A, et al. Histochemical analyses of altered fetal lung development following single vs multiple courses of antenatal steroids. J Histochem Cytochem. 2005; 53, 14691479.
102. Pratt, L, Magness, RR, Phernetton, T, et al. Repeated use of betamethasone in rabbits: effects of treatment variation on adrenal suppression, pulmonary maturation, and pregnancy outcome. Am J Obstet Gynecol. 1999; 180, 9951005.
103. Stewart, JD, Sienko, AE, Gonzalez, CL, Christensen, HD, Rayburn, WF. Placebo-controlled comparison between a single dose and a multidose of betamethasone in accelerating lung maturation of mice offspring. Am J Obstet Gynecol. 1998; 179, 12411247.
104. Engle, MJ, Kemnitz, JW, Rao, TJ, Perelman, RH, Farrell, PM. Effects of maternal dexamethasone therapy on fetal lung development in the rhesus monkey. Am J Perinatol. 1996; 13, 399407.
105. Tan, RC, Ikegami, M, Jobe, AH, et al. Developmental and glucocorticoid regulation of surfactant protein mRNAs in preterm lambs. Am J Physiol. 1999; 277(Pt 1), L1142L1148.
106. McEvoy, C, Schilling, D, Spitale, P, et al. Decreased respiratory compliance in infants less than or equal to 32 weeks’ gestation, delivered more than 7 days after antenatal steroid therapy. Pediatrics. 2008; 121, e1032e1038.
107. McEvoy, C, Bowling, S, Williamson, K, et al. Timing of antenatal corticosteroids and neonatal pulmonary mechanics. Am J Obstet Gynecol. 2000; 183, 895899.
108. Crowther, CA, McKinlay, CJD, Middleton, P, Harding, JE. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Sys Rev. 2011; Issue 6, Article ID CD003935.
109. Crowther, CA, Aghajafari, F, Askie, LM, et al. Repeat prenatal corticosteroid prior to preterm birth: a systematic review and individual participant data meta-analysis for the PRECISE study group (prenatal repeat corticosteroid international IPD study group: assessing the effects using the best level of evidence) – study protocol. Syst Rev. 2012; 1, 12.
110. Zephyrin, LC, Hong, KN, Wapner, RJ, et al. Gestational age-specific risks vs benefits of multicourse antenatal corticosteroids for preterm labor. Am J Obstet Gynecol. 2013; 209, 330.e1330.e7.
111. Barker, DJP. The developmental origins of well-being. Phil Trans R Soc Lond. 2004; 359, 13591366.
112. Benediktsson, R, Lindsay, RS, Noble, J, Seckl, JR, Edwards, CR. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet. 1993; 341, 339341.
113. Nyirenda, MJ, Lindsay, RS, Kenyon, CJ, Burchell, A, Seckl, JR. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin Invest. 1998; 101, 21742181.
114. Sloboda, DM, Moss, TJM, Li, S, et al. Hepatic glucose regulation and metabolism in adult sheep: effects of prenatal betamethasone. Am J Physiol Endocrinol Metab. 2005; 289, E721E728.
115. Lindsay, RS, Lindsay, RM, Edwards, CR, Seckl, JR. Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension. 1996; 27, 12001204.
116. Langley-Evans, SC, Phillips, GJ, Benediktsson, R, et al. Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta. 1996; 17, 169172.
117. Langley-Evans, SC. Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J Hypertens. 1997; 15, 537544.
118. Stewart, PM, Rogerson, FM, Mason, JI. Type 2 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal adrenal steroidogenesis. J Clin Endocrinol Metab. 1995; 80, 885890.
119. McTernan, CL, Draper, N, Nicholson, H, et al. Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab. 2001; 86, 49794983.
120. Goedhart, G, Vrijkotte, TG, Roseboom, TJ, et al. Maternal cortisol and offspring birthweight: results from a large prospective cohort study. Psychoneuroendocrinology. 2010; 35, 644652.
121. Bolten, MI, Wurmser, H, Buske-Kirschbaum, A, et al. Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch Womens Ment Health. 2011; 14, 3341.
122. Huh, S, Andrew, R, Rich-Edwards, J, et al. Association between umbilical cord glucocorticoids and blood pressure at age 3 years. BMC Med. 2008; 6, 25.
123. Van Dijk, AE, Van Eijsden, M, Stronks, K, Gemke, RJ, Vrijkotte, TG. The relation of maternal job strain and cortisol levels during early pregnancy with body composition later in the 5-year-old child: the ABCD study. Early Hum Dev. 2012; 88, 351356.
124. Raikkonen, K, Seckl, JR, Heinonen, K, et al. Maternal prenatal licorice consumption alters hypothalamic–pituitary–adrenocortical axis function in children. Psychoneuroendocrinology. 2010; 35, 15871593.
125. Bergman, K, Sarkar, P, Glover, V, O’Connor, TG. Maternal prenatal cortisol and infant cognitive development: moderation by infant–mother attachment. Biol Psychiatry. 2010; 67, 10261032.
126. Geoffroy, MC, Hertzman, C, Li, L, Power, C. Morning salivary cortisol and cognitive function in mid-life: evidence from a population-based birth cohort. Psychol Med. 2012; 42, 17631773.
127. Raikkonen, K, Pesonen, AK, Heinonen, K, et al. Maternal licorice consumption and detrimental cognitive and psychiatric outcomes in children. Am J Epidemiol. 2009; 170, 11371146.
128. Buss, C, Davis, EP, Shahbaba, B, et al. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc Natl Acad Sci USA. 2012; 109, E1312E1319.
129. Welberg, LA, Seckl, JR, Holmes, MC. Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience. 2001; 104, 7179.
130. Welberg, LA, Seckl, JR, Holmes, MC. Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci. 2000; 12, 10471054.
131. Raikkonen, K, Seckl, JR, Pesonen, AK, Simons, A, Van den Bergh, BR. Stress, glucocorticoids and liquorice in human pregnancy: programmers of the offspring brain. Stress. 2011; 14, 590603.
132. Baird, J, Kurshid, MA, Kim, M, et al. Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos Int. 2011; 22, 13231334.
133. Dahlgren, J, Nilsson, C, Jennische, E, et al. Prenatal cytokine exposure results in obesity and gender-specific programming. Am J Physiol Endocrinol Metab. 2001; 281, E326E334.
134. Berry, MJ, Jaquiery, AL, Oliver, MH, Harding, JE, Bloomfield, FH. Antenatal corticosteroid exposure at term increases adult adiposity: an experimental study in sheep. Acta Obstet Gynecol Scand. 2013; 92, 862865.
135. Gatford, KL, Wintour, EM, De Blasio, MJ, Owens, JA, Dodic, M. Differential timing for programming of glucose homoeostasis, sensitivity to insulin and blood pressure by in utero exposure to dexamethasone in sheep. Clin Sci (Colch). 2000; 98, 553560.
136. Cleasby, ME, Kelly, PA, Walker, BR, Seckl, JR. Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology. 2003; 144, 9991007.
137. Celsi, G, Kistner, A, Aizman, R, et al. Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res. 1998; 44, 317322.
138. Levitt, NS, Lindsay, RS, Holmes, MC, Seckl, JR. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology. 1996; 64, 412418.
139. Dagan, A, Gattineni, J, Habib, S, Baum, M. Effect of prenatal dexamethasone on postnatal serum and urinary angiotensin II levels. Am J Hypertens. 2010; 23, 420424.
140. Tang, JI, Kenyon, CJ, Seckl, JR, Nyirenda, MJ. Prenatal overexposure to glucocorticoids programs renal 11beta-hydroxysteroid dehydrogenase type 2 expression and salt-sensitive hypertension in the rat. J Hypertens. 2011; 29, 282289.
141. O’Regan, D, Kenyon, CJ, Seckl, JR, Holmes, MC. Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol Endocrinol Metab. 2004; 287, E863E870.
142. Dodic, M, Samuel, C, Moritz, K, et al. Impaired cardiac functional reserve and left ventricular hypertrophy in adult sheep after prenatal dexamethasone exposure. Circ Res. 2001; 89, 623629.
143. Figueroa, JP, Rose, JC, Massmann, GA, Zhang, J, Acuna, G. Alterations in fetal kidney development and elevations in arterial blood pressure in young adult sheep after clinical doses of antenatal glucocorticoids. Pediatr Res. 2005; 58, 510515.
144. Shaltout, HA, Rose, JC, Figueroa, JP, et al. Acute AT(1)-receptor blockade reverses the hemodynamic and baroreflex impairment in adult sheep exposed to antenatal betamethasone. Am J Physiol Heart Circ Physiol. 2010; 299, H541H547.
145. de Vries, A, Holmes, MC, Heijnis, A, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic–pituitary–adrenal axis function. J Clin Invest. 2007; 117, 10581067.
146. Moss, TJ, Sloboda, DM, Gurrin, LC, et al. Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Regul Integr Comp Physiol. 2001; 281, R960R970.
147. Long, NM, Shasa, DR, Ford, SP, Nathanielsz, PW. Growth and insulin dynamics in two generations of female offspring of mothers receiving a single course of synthetic glucocorticoids. Am J Obstet Gynecol. 2012; 207, 203.e1203.e8.
148. Nyirenda, MJ, Welberg, LA, Seckl, JR. Programming hyperglycaemia in the rat through prenatal exposure to glucocorticoids-fetal effect or maternal influence? J Endocrinol. 2001; 170, 653660.
149. Sloboda, DM, Moss, T, Li, S, et al. Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep. Am J Physiol Endocrinol Metab. 2007; 292, E61E70.
150. Ortiz, LA, Quan, A, Weinberg, A, Baum, M. Effect of prenatal dexamethasone on rat renal development. Kidney Int. 2001; 59, 16631669.
151. Ortiz, LA, Quan, A, Zarzar, F, Weinberg, A, Baum, M. Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension. 2003; 41, 328334.
152. Singh, RR, Cullen-McEwen, LA, Kett, MM, et al. Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol (Lond). 2007; 579(Pt 2), 503513.
153. Wintour, EM, Moritz, KM, Johnson, K, et al. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol (Lond). 2003; 549(Pt 3), 929935.
154. Banjanin, S, Kapoor, A, Matthews, SG. Prenatal glucocorticoid exposure alters hypothalamic–pituitary–adrenal function and blood pressure in mature male guinea pigs. J Physiol (Lond). 2004; 558(Pt 1), 305318.
155. Dodic, M, Hantzis, V, Duncan, J, et al. Programming effects of short prenatal exposure to cortisol. Faseb J. 2002; 16, 10171026.
156. Nyirenda, MJ, Carter, R, Tang, JI, et al. Prenatal programming of metabolic syndrome in the common marmoset is associated with increased expression of 11beta-hydroxysteroid dehydrogenase type 1. Diabetes. 2009; 58, 28732879.
157. Sloboda, DM, Newnham, JP, Challis, JR. Repeated maternal glucocorticoid administration and the developing liver in fetal sheep. J Endocrinol. 2002; 175, 535543.
158. Segar, JL, Roghair, RD, Segar, EM, et al. Early gestation dexamethasone alters baroreflex and vascular responses in newborn lambs before hypertension. Am J Physiol Regul Integr Comp Physiol. 2006; 291, R481R488.
159. Shaltout, HA, Chappell, MC, Rose, JC, Diz, DI. Exaggerated sympathetic mediated responses to behavioral or pharmacological challenges following antenatal betamethasone exposure. Am J Physiol Endocrinol Metab. 2011; 300, E979E985.
160. Moritz, KM, Dodic, M, Jefferies, AJ, et al. Haemodynamic characteristics of hypertension induced by prenatal cortisol exposure in sheep. Clin Exp Pharmacol Physiol. 2009; 36, 981987.
161. Contag, SA, Bi, J, Chappell, MC, Rose, JC. Developmental effect of antenatal exposure to betamethasone on renal angiotensin II activity in the young adult sheep. Am J Physiol Renal Physiol. 2010; 298, F847F856.
162. Massmann, GA, Zhang, J, Rose, JC, Figueroa, JP. Acute and long-term effects of clinical doses of antenatal glucocorticoids in the developing fetal sheep kidney. J Soc Gynecol Investig. 2006; 13, 174180.
163. Dean, F, Yu, C, Lingas, RI, Matthews, SG. Prenatal glucocorticoid modifies hypothalamo-pituitary-adrenal regulation in prepubertal guinea pigs. Neuroendocrinology. 2001; 73, 194202.
164. Uno, H, Eisele, S, Sakai, A, et al. Neurotoxicity of glucocorticoids in the primate brain. Horm Behav. 1994; 28, 336348.
165. O’Brien, K, Sekimoto, H, Boney, C, Malee, M. Effect of fetal dexamethasone exposure on the development of adult insulin sensitivity in a rat model. J Matern Fetal Neonatal Med. 2008; 21, 623628.
166. Jellyman, JK, Martin-Gronert, MS, Cripps, RL, et al. Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the ovine fetus during late gestation. PLoS One. 2012; 7, e52363.
167. Moss, TJM, Doherty, DA, Nitsos, I, et al. Effects into adulthood of single or repeated antenatal corticosteroids in sheep. Am J Obstet Gynecol. 2005; 192, 146152.
168. Gesina, E, Tronche, F, Herrera, P, et al. Dissecting the role of glucocorticoids on pancreas development. Diabetes. 2004; 53, 23222329.
169. Shen, CN, Seckl, JR, Slack, JM, Tosh, D. Glucocorticoids suppress beta-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J. 2003; 375(Pt 1), 4150.
170. Blondeau, B, Lesage, J, Czernichow, P, Dupouy, JP, Breant, B. Glucocorticoids impair fetal beta-cell development in rats. Am J Physiol Endocrinol Metab. 2001; 281, E592E599.
171. Moritz, K, Butkus, A, Hantzis, V, et al. Prolonged low-dose dexamethasone, in early gestation, has no long-term deleterious effect on normal ovine fetuses. Endocrinology. 2002; 143, 11591165.
172. Dodic, M, Tersteeg, M, Jefferies, A, Wintour, EM, Moritz, K. Prolonged low-dose dexamethasone treatment, in early gestation, does not alter blood pressure or renal function in adult sheep. J Endocrinol. 2003; 179, 275280.
173. Bramlage, CP, Schlumbohm, C, Pryce, CR, et al. Prenatal dexamethasone exposure does not alter blood pressure and nephron number in the young adult marmoset monkey. Hypertension. 2009; 54, 11151122.
174. Gubhaju, L, Sutherland, MR, Yoder, BA, et al. Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am J Physiol Renal Physiol. 2009; 297, F1668F1677.
175. Liu, L, Li, A, Matthews, SG. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am J Physiol Endocrinol Metab. 2001; 280, E729E739.
176. Moritz, KM, Dodic, M, Wintour, EM. Kidney development and the fetal programming of adult disease. Bioessays. 2003; 25, 212220.
177. Sloboda, DM, Moss, T, Gurrin, L, Newnham, JP, Challis, J. The effect of prenatal betamethasone administration on postnatal ovine hypothalamic–pituitary–adrenal function. J Endocrinol. 2002; 172, 7181.
178. Dalziel, SR, Walker, NK, Parag, V, et al. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet. 2005; 365, 18561862.
179. Dessens, AB, Haas, HS, Koppe, JG. Twenty-year follow-up of antenatal corticosteroid treatment. Pediatrics. 2000; 105, E77.
180. Norberg, H, Stalnacke, J, Nordenstrom, A, Norman, M. Repeat antenatal steroid exposure and later blood pressure, arterial stiffness, and metabolic profile. J Pediatr. 2013; 163, 711716.
181. Finken, MJ, Keijzer-Veen, MG, Dekker, FW, et al. Antenatal glucocorticoid treatment is not associated with long-term metabolic risks in individuals born before 32 weeks of gestation. Arch Dis Child Fetal Neonatal Ed. 2008; 93, F442F447.
182. de Vries, WB, Karemaker, R, Mooy, NF, et al. Cardiovascular follow-up at school age after perinatal glucocorticoid exposure in prematurely born children: perinatal glucocorticoid therapy and cardiovascular follow-up. Arch Pediatr Adolesc Med. 2008; 162, 738744.
183. Doyle, LW, Ford, GW, Davis, NM, Callanan, C. Antenatal corticosteroid therapy and blood pressure at 14 years of age in preterm children. Clin Sci (Colch). 2000; 98, 137142.
184. Kelly, BA, Lewandowski, AJ, Worton, SA, et al. Antenatal glucocorticoid exposure and long-term alterations in aortic function and glucose metabolism. Pediatrics. 2012; 129, e1282e1290.
185. Alexander, N, Rosenlocher, F, Stalder, T, et al. Impact of antenatal synthetic glucocorticoid exposure on endocrine stress reactivity in term-born children. J Clin Endocrinol Metab. 2012; 97, 35383544.
186. Erni, K, Shaqiri-Emini, L, La Marca, R, Zimmermann, R, Ehlert, U. Psychobiological effects of prenatal glucocorticoid exposure in 10-year-old-children. Front Psychiatry. 2012; 3, 104.
187. Asztalos, EV, Murphy, KE, Willan, AR, et al. Multiple courses of antenatal corticosteroids for preterm birth study: outcomes in children at 5 years of age (MACS-5). JAMA Pediatr. 2013; 167, 11021110.
188. Wapner, RJ, Sorokin, Y, Mele, L, et al. Long-term outcomes after repeat doses of antenatal corticosteroids. N Engl J Med. 2007; 357, 11901198.
189. Crowther, CA, Doyle, LW, Haslam, RR, et al. Outcomes at 2 years of age after repeat doses of antenatal corticosteroids. N Engl J Med. 2007; 357, 11791189.
190. McKinlay, CJD, Cutfield, WS, Battin, MR, et al. Cardiovascular risk factors after exposure to repeat antenatal betamethasone: early school-age follow-up of a randomised trial (ACTORDS). J Paediatr Child Health. 2011; 47(S1), A042.
191. Newnham, JP, Evans, SF, Godfrey, M, et al. Maternal, but not fetal, administration of corticosteroids restricts fetal growth. J Matern Fetal Med. 1999; 8, 8187.
192. Fowden, AL, Forhead, AJ. Endocrine regulation of feto-placental growth. Horm Res. 2009; 72, 257265.
193. Stonestreet, BS, Watkins, S, Petersson, KH, Sadowska, GB. Effects of multiple courses of antenatal corticosteroids on regional brain and somatic tissue water content in ovine fetuses. J Soc Gynecol Investig. 2004; 11, 166174.
194. Milley, JR. Effects of increased cortisol concentration on ovine fetal leucine kinetics and protein metabolism. Am J Physiol. 1995; 268(Pt 1), E1114E1122.
195. Marconi, AM, Mariotti, V, Teng, C, et al. Effect of antenatal betamethasone on maternal and fetal amino acid concentration. Am J Obstet Gynecol. 2010; 202, 166.e1166.e6.
196. Verhaeghe, J, Vanstapel, F, Van Bree, R, Van Herck, E, Coopmans, W. Transient catabolic state with reduced IGF-I after antenatal glucocorticoids. Pediatr Res. 2007; 62, 295300.
197. Gatford, KL, Owens, JA, Li, S, et al. Repeated betamethasone treatment of pregnant sheep programs persistent reductions in circulating IGF-I and IGF-binding proteins in progeny. Am J Physiol Endocrinol Metab. 2008; 295, E170E178.
198. Ahmad, I, Beharry, KD, Valencia, AM, et al. Influence of a single course of antenatal betamethasone on the maternal-fetal insulin-IGF-GH axis in singleton pregnancies. Growth Horm IGF Res. 2006; 16, 267275.
199. Jensen, E, Gallahere, B, Breier, B, Harding, J. The effect of a chronic maternal cortisol infusion on the late-gestation fetal sheep. J Endocrinol. 2002; 174, 2736.
200. Mosier, HD Jr., Spencer, EM, Dearden, LC, Jansons, RA. The effect of glucocorticoids on plasma insulin-like growth factor I concentration in the rat fetus. Pediatr Res. 1987; 22, 9295.
201. Fowden, AL. The insulin-like growth factors and feto-placental growth. Placenta. 2003; 24, 803812.
202. Stewart, JD, Gonzalez, CL, Christensen, HD, Rayburn, WF. Impact of multiple antenatal doses of betamethasone on growth and development of mice offspring. Am J Obstet Gynecol. 1997; 177, 11381144.
203. Sawady, J, Mercer, BM, Wapner, RJ, et al. The National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network Beneficial Effects of Antenatal Repeated Steroids study: impact of repeated doses of antenatal corticosteroids on placental growth and histologic findings. Am J Obstet Gynecol. 2007; 197, 281.e1281.e8.
204. Battin, M, Bevan, C, Harding, J. Growth in the neonatal period after repeat courses of antenatal corticosteroids: data from the ACTORDS randomised trial. Arch Dis Child Fetal Neonatal Ed. 2012; 97, F99F105.
205. Smolders-de Haas, H, Neuvel, J, Schmand, B, et al. Physical development and medical history of children who were treated antenatally with corticosteroids to prevent respiratory distress syndrome: a 10- to 12-year follow-up. Pediatrics. 1990; 86, 6570.
206. Dalziel, SR, Liang, A, Parag, V, Rodgers, A, Harding, JE. Blood pressure at 6 years of age after prenatal exposure to betamethasone: follow-up results of a randomized, controlled trial. Pediatrics. 2004; 114, e373e377.
207. Swolin-Eide, D, Dahlgren, J, Nilsson, C, et al. Affected skeletal growth but normal bone mineralization in rat offspring after prenatal dexamethasone exposure. J Endocrinol. 2002; 174, 411418.
208. Dalziel, SR, Fenwick, S, Cundy, T, et al. Peak bone mass after exposure to antenatal betamethasone and prematurity: follow-up of a randomized controlled trial. J Bone Miner Res. 2006; 21, 11751186.
209. Dunn, E, Kapoor, A, Leen, J, Matthews, SG. Prenatal synthetic glucocorticoid exposure alters hypothalamic–pituitary–adrenal regulation and pregnancy outcomes in mature female guinea pigs. J Physiol (Lond). 2010; 588(Pt 5), 887899.
210. Iqbal, M, Moisiadis, VG, Kostaki, A, Matthews, SG. Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic–pituitary–adrenal function. Endocrinology. 2012; 153, 32953307.
211. Huang, WL, Beazley, LD, Quinlivan, JA, et al. Effect of corticosteroids on brain growth in fetal sheep. Obstet Gynecol. 1999; 94, 213218.
212. Uno, H, Lohmiller, L, Thieme, C, et al. Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Brain Res Dev Brain Res. 1990; 53, 157167.
213. Dunlop, SA, Archer, MA, Quinlivan, JA, Beazley, LD, Newnham, JP. Repeated prenatal corticosteroids delay myelination in the ovine central nervous system. J Matern Fetal Med. 1997; 6, 309313.
214. Huang, WL, Harper, CG, Evans, SF, Newnham, JP, Dunlop, SA. Repeated prenatal corticosteroid administration delays myelination of the corpus callosum in fetal sheep. Int J Dev Neurosci. 2001; 19, 415425.
215. Antonow-Schlorke, I, Helgert, A, Gey, C, et al. Adverse effects of antenatal glucocorticoids on cerebral myelination in sheep. Obstet Gynecol. 2009; 113, 142151.
216. Malaeb, S, Hovanesian, V, Sarasin, M, et al. Effects of maternal antenatal glucocorticoid treatment on apoptosis in the ovine fetal cerebral cortex. J Neurosci Res. 2009; 87, 179189.
217. Scheepens, A, van de Waarenburg, M, van den Hove, D, Blanco, CE. A single course of prenatal betamethasone in the rat alters postnatal brain cell proliferation but not apoptosis. J Physiol (Lond). 2003; 552(Pt 1), 163175.
218. MacArthur, BA, Howie, RN, Dezoete, JA, Elkins, J. Cognitive and psychosocial development of 4-year-old children whose mothers were treated antenatally with betamethasone. Pediatrics. 1981; 68, 638643.
219. MacArthur, B, Howie, R, Dezoete, J, Elkins, J. School progress and cognitive development of 6-year old children whose mothers were treated antenatally with betamethasone. Pediatrics. 1982; 70, 99105.
220. Collaborative Group on Antenatal Steroid Therapy. Effects of antenatal dexamethasone administration in the infant: long-term follow-up. J Pediatr. 1984; 104, 259267.
221. Schmand, B, Neuvel, J, Smolders-de Haas, H, et al. Psychological development of children who were treated antenatally with corticosteroids to prevent respiratory distress syndrome. Pediatrics. 1990; 86, 5864.
222. Dalziel, SR, Lim, VK, Lambert, A, et al. Antenatal exposure to betamethasone: psychological functioning and health related quality of life 31 years after inclusion in randomised controlled trial. BMJ. 2005; 331, 665.
223. French, NP, Hagan, R, Evans, SF, Mullan, A, Newnham, JP. Repeated antenatal corticosteroids: effects on cerebral palsy and childhood behavior. Am J Obstet Gynecol. 2004; 190, 588595.
224. Asztalos, EV, Murphy, KE, Hannah, ME, et al. Multiple courses of antenatal corticosteroids for preterm birth study: 2-year outcomes. Pediatrics. 2010; 126, e1045e1055.
225. Crowther, CA, Doyle, LW, Anderson, P, et al. Repeat dose(s) of prenatal corticosteroids for women at risk of preterm birth: early school-age outcomes (6 to 8 years’) for children in the ACTORDS trial. J Paediatr Child Health. 2011; 47, A156.
226. Modi, N, Lewis, H, Al-Naqeeb, N, et al. The effects of repeated antenatal glucocorticoid therapy on the developing brain. Pediatr Res. 2001; 50, 581585.
227. Asztalos, E, Willan, A, Murphy, K, et al. Association between gestational age at birth, antenatal corticosteroids, and outcomes at 5 years: multiple courses of antenatal corticosteroids for preterm birth study at 5 years of age (MACS-5). BMC Pregnancy Childbirth. 2014; 14, 272.
228. Gates, S, Brocklehurst, P. Decline in effectiveness of antenatal corticosteroids with time to birth: real or artefact? BMJ. 2007; 335, 7779.
229. Bunton, TE, Plopper, CG. Triamcinolone-induced structural alterations in the development of the lung of the fetal rhesus macaque. Am J Obstet Gynecol. 1984; 148, 203215.
230. Massaro, D, Massaro, GD. Dexamethasone accelerates postnatal alveolar wall thinning and alters wall composition. Am J Physiol. 1986; 251(Pt 2), R218R224.
231. Blanco, LN, Massaro, GD, Massaro, D. Alveolar dimensions and number: developmental and hormonal regulation. Am J Physiol. 1989; 257(Pt 1), L240L247.
232. Tschanz, SA, Damke, BM, Burri, PH. Influence of postnatally administered glucocorticoids on rat lung growth. Biol Neonate. 1995; 68, 229245.
233. Roth-Kleiner, M, Berger, TM, Gremlich, S, et al. Neonatal steroids induce a down-regulation of tenascin-C and elastin and cause a deceleration of the first phase and an acceleration of the second phase of lung alveolarization. Histochem Cell Biol. 2014; 141, 7584.
234. Tschanz, SA, Haenni, B, Burri, PH. Glucocorticoid induced impairment of lung structure assessed by digital image analysis. Eur J Pediatr. 2002; 161, 2630.
235. Wiebicke, W, Poynter, A, Chernick, V. Normal lung growth following antenatal dexamethasone treatment for respiratory distress syndrome. Pediatr Pulmonol. 1988; 5, 2730.
236. Dalziel, SR, Rea, HH, Walker, NK, et al. Long term effects of antenatal betamethasone on lung function: 30 year follow up of a randomised controlled trial. Thorax. 2006; 61, 678683.
237. Schwab, M, Coksaygan, T, Samtani, MN, Jusko, WJ, Nathanielsz, PW. Kinetics of betamethasone and fetal cardiovascular adverse effects in pregnant sheep after different doses. Obstet Gynecol. 2006; 108(Pt 1), 617625.
238. Loehle, M, Schwab, M, Kadner, S, et al. Dose-response effects of betamethasone on maturation of the fetal sheep lung. Am J Obstet Gynecol. 2009; 202, 186.e1.
239. Muhlhausler, BS, Bloomfield, FH, Gillman, MW. Whole animal experiments should be more like human randomized controlled trials. PLoS Biol. 2013; 11, e1001481.
240. Mildenhall, LFJ, Battin, MR, Morton, SMB, et al. Exposure to repeat doses of antenatal glucocorticoids is associated with altered cardiovascular status after birth. Arch Dis Child Fetal Neonatal Ed. 2006; 91, F56F60.
241. Mildenhall, L, Battin, M, Bevan, C, Kuschel, C, Harding, JE. Repeat prenatal corticosteroid doses do not alter neonatal blood pressure or myocardial thickness: randomized, controlled trial. Pediatrics. 2009; 123, e646e652.
242. Khandelwal, M, Chang, E, Hansen, C, Hunter, K, Milcarek, B. Betamethasone dosing interval: 12 or 24 hours apart? A randomized, noninferiority open trial. Am J Obstet Gynecol. 2012; 206, 201.e1201.e11.
243. Ballard, PL, Ballard, RA. Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. Am J Obstet Gynecol. 1995; 173, 254262.
244. Grier, DG, Halliday, HL. Effects of glucocorticoids on fetal and neonatal lung development. Treat Respir Med. 2004; 3, 295306.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed