Skip to main content Accessibility help
Hostname: page-component-55597f9d44-t4qhp Total loading time: 1.601 Render date: 2022-08-09T02:03:02.923Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Hydrodynamics of micro-swimmers in films

Published online by Cambridge University Press:  29 September 2016

A. J. T. M. Mathijssen*
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OxfordOX1 3NP, UK
A. Doostmohammadi
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OxfordOX1 3NP, UK
J. M. Yeomans
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OxfordOX1 3NP, UK
T. N. Shendruk
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OxfordOX1 3NP, UK
Email address for correspondence:


One of the principal mechanisms by which surfaces and interfaces affect microbial life is by perturbing the hydrodynamic flows generated by swimming. By summing a recursive series of image systems, we derive a numerically tractable approximation to the three-dimensional flow fields of a stokeslet (point force) within a viscous film between a parallel no-slip surface and a no-shear interface and, from this Green’s function, we compute the flows produced by a force- and torque-free micro-swimmer. We also extend the exact solution of Liron & Mochon (J. Engng Maths, vol. 10 (4), 1976, pp. 287–303) to the film geometry, which demonstrates that the image series gives a satisfactory approximation to the swimmer flow fields if the film is sufficiently thick compared to the swimmer size, and we derive the swimmer flows in the thin-film limit. Concentrating on the thick-film case, we find that the dipole moment induces a bias towards swimmer accumulation at the no-slip wall rather than the water–air interface, but that higher-order multipole moments can oppose this. Based on the analytic predictions, we propose an experimental method to find the multipole coefficient that induces circular swimming trajectories, allowing one to analytically determine the swimmer’s three-dimensional position under a microscope.

© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ardekani, A. M. & Gore, E. 2012 Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid. Phys. Rev. E 85 (5), 056309.CrossRefGoogle Scholar
Bees, M. A., Andresen, P., Mosekilde, E. & Givskov, M. 2000 The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens . J. Math. Biol. 40 (1), 2763.CrossRefGoogle Scholar
Berg, H. C. & Turner, L. 1990 Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophys. J. 58 (4), 919930.CrossRefGoogle Scholar
Berke, A. P., Turner, L., Berg, H. C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102.CrossRefGoogle Scholar
Blake, J. 1971a A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Blake, J. R. 1971b A note on the image system for a stokeslet in a no-slip boundary. Proc. Camb. Phil. Soc. 70, 303310.CrossRefGoogle Scholar
Bukoreshtliev, N. V., Haase, K. & Pelling, A. E. 2013 Mechanical cues in cellular signalling and communication. Cell Tissue Res. 352 (1), 7794.CrossRefGoogle Scholar
Chacón, R. 2013 Chaotic dynamics of a microswimmer in Poiseuille flow. Phys. Rev. E 88 (5), 052905.Google Scholar
Conrad, J. C. 2012 Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation. Rev. Microbiol. 163 (9–10), 619629.Google ScholarPubMed
Costanzo, A., Di Leonardo, R., Ruocco, G. & Angelani, L. 2012 Transport of self-propelling bacteria in micro-channel flow. J. Phys.: Condens. Matter 24 (6), 065101.Google ScholarPubMed
Crowdy, D., Lee, S., Samson, O., Lauga, E. & Hosoi, A. E. 2011 A two-dimensional model of low-Reynolds number swimming beneath a free surface. J. Fluid Mech. 681, 2447.CrossRefGoogle Scholar
Crowdy, D. G. & Or, Y. 2010 Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall. Phys. Rev. E 81, 036313.Google Scholar
Dechesne, A., Wang, G., Gülez, G., Or, D. & Smets, B. F. 2010 Hydration-controlled bacterial motility and dispersal on surfaces. Proc. Natl Acad. Sci. USA 107 (32), 1436914372.CrossRefGoogle ScholarPubMed
Di Leonardo, R., Dell’Arciprete, D., Angelani, L. & Iebba, V. 2011 Swimming with an image. Phys. Rev. Lett. 106, 038101.CrossRefGoogle Scholar
Diluzio, W. R., Turner, L., Mayer, M., Garstecki, P., Weibel, D. B., Berg, H. C. & Whitesides, G. M. 2005 Escherichia coli swim on the right-hand side. Nature 435 (7046), 12711274.CrossRefGoogle ScholarPubMed
Doostmohammadi, A., Stocker, R. & Ardekani, A. M. 2012 Low-Reynolds-number swimming at pycnoclines. Proc. Natl Acad. Sci. USA 109 (10), 38563861.CrossRefGoogle ScholarPubMed
Drescher, K., Leptos, K. C., Tuval, I., Ishikawa, T., Pedley, T. J. & Goldstein, R. E. 2009 Dancing Volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 168101.CrossRefGoogle ScholarPubMed
Figueroa-Morales, N., Miño, G., Rivera, A., Caballero, R., Clément, E., Altshuler, E. & Lindner, A. 2015 Living on the edge: transfer and traffic of E. coli in a confined flow. Soft Matt. 11, 62846293.CrossRefGoogle Scholar
Frymier, P. D., Ford, R. M., Berg, H. C. & Cummings, P. T. 1995 Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl Acad. Sci. USA 92 (13), 61956199.CrossRefGoogle Scholar
Gachelin, J., Miño, G., Berthet, H., Lindner, A., Rousselet, A. & Clément, É. 2013 Non-Newtonian viscosity of Escherichia coli suspensions. Phys. Rev. Lett. 110 (26), 268103.CrossRefGoogle ScholarPubMed
Givskov, M., Eberl, L. & Molin, S. 1997 Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens . Fatigue Engng Mater. Struct. Microbiol. Lett. 148 (2), 115122.Google Scholar
de Graaf, J. & Stenhammar, J.2016 Stirring by periodic arrays of microswimmers. Preprint arXiv:1606.00213.Google Scholar
Grimont, P. A. & Grimont, F. 1978 The genus Serratia . Annu. Rev. Microbiol. 32 (1), 221248.CrossRefGoogle ScholarPubMed
Guasto, J. S., Johnson, K. A. & Gollub, J. P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105 (16), 168102.Google Scholar
Guidobaldi, H. A., Jeyaram, Y., Condat, C. A., Oviedo, M., Berdakin, I., Moshchalkov, V. V., Giojalas, L. C., Silhanek, A. V. & Marconi, V. I. 2015 Disrupting the wall accumulation of human sperm cells by artificial corrugation. Biomicrofluidics 9 (2), 024122.CrossRefGoogle ScholarPubMed
Guzmán-Lastra, F. & Soto, R. 2012 Stochastic resonance on the transverse displacement of swimmers in an oscillatory shear flow. Phys. Rev. E 86, 037301.Google Scholar
Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. 2004 Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2 (2), 95108.CrossRefGoogle Scholar
Harshey, R. M. 2003 Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57 (1), 249273.CrossRefGoogle Scholar
Harshey, R. M. & Matsuyama, T. 1994 Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc. Natl Acad. Sci. USA 91 (18), 86318635.CrossRefGoogle ScholarPubMed
Hill, J., Kalkanci, O., McMurry, J. L. & Koser, H. 2007 Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98, 068101.CrossRefGoogle ScholarPubMed
Howse, J. R., Jones, R. A., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.CrossRefGoogle ScholarPubMed
Ishikawa, T., Locsei, J. & Pedley, T. 2010 Fluid particle diffusion in a semidilute suspension of model micro-organisms. Phys. Rev. E 82 (2), 021408.Google Scholar
Ishikawa, T. & Pedley, T. 2007 The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 588, 399435.Google Scholar
Ishimoto, K., Cosson, J. & Gaffney, E. A. 2016 A simulation study of sperm motility hydrodynamics near fish eggs and spheres. J. Theor. Biol. 389, 187197.CrossRefGoogle Scholar
Jeanneret, R., Kantsler, V., Pushkin, D. O. & Polin, M. 2016 Entrainment dominates the interaction of microalgae with micron-sized objects. Nat. Commun. 7, 12518.CrossRefGoogle Scholar
Jepson, A., Martinez, V. A., Schwarz-Linek, J., Morozov, A. & Poon, W. C. 2013 Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria. Phys. Rev. E 88 (4), 041002.Google Scholar
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. 2014 Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3, 02403.Google ScholarPubMed
Karimi, A. & Ardekani, A. 2013 Gyrotactic bioconvection at pycnoclines. J. Fluid Mech. 733, 245267.CrossRefGoogle Scholar
Karimi, A., Karig, D., Kumar, A. & Ardekani, A. 2015 Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab on a Chip 15 (1), 2342.CrossRefGoogle ScholarPubMed
Karimi, A., Yazdi, S. & Ardekani, A. M. 2013 Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7 (2), 021501.CrossRefGoogle ScholarPubMed
Katija, K. 2012 Biogenic inputs to ocean mixing. J. Expl Biol. 215 (6), 10401049.CrossRefGoogle ScholarPubMed
Kim, M. J. & Breuer, K. S. 2007 Controlled mixing in microfluidic systems using bacterial chemotaxis. Anal. Chem. 79 (3), 955959.CrossRefGoogle ScholarPubMed
Kim, S. & Karilla, S. 1991 Microhydrodynamics: Butterworth Series of Chemical Engineering. Butterworth.Google Scholar
Kurtuldu, H., Guasto, J. S., Johnson, K. A. & Gollub, J. 2011 Enhancement of biomixing by swimming algal cells in two-dimensional films. Proc. Natl Acad. Sci. USA 108 (26), 1039110395.CrossRefGoogle ScholarPubMed
Lambert, R. A., Picano, F., Breugem, W.-P. & Brandt, L. 2013 Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech. 733, 528557.CrossRefGoogle Scholar
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Leptos, K. C., Guasto, J. S., Gollub, J., Pesci, A. I. & Goldstein, R. E. 2009 Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103 (19), 198103.CrossRefGoogle ScholarPubMed
Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J. X., Maxey, M. R. & Brun, Y. V. 2011 Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84, 041932.Google Scholar
Li, G. & Tang, J. X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103, 078101.CrossRefGoogle Scholar
Liron, N. & Mochon, S. 1976 Stokes flow for a stokeslet between two parallel flat plates. J. Engng Maths 10 (4), 287303.CrossRefGoogle Scholar
Lopez, D. & Lauga, E. 2014 Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26 (7), 071902.CrossRefGoogle Scholar
López, H. M., Gachelin, J., Douarche, C., Auradou, H. & Clément, E. 2015 Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115, 028301.CrossRefGoogle ScholarPubMed
Magar, V., Goto, T. & Pedley, T. J. 2003 Nutrient uptake by a self-propelled steady squirmer. Q. J. Mech. Appl. Maths 56 (1), 6591.CrossRefGoogle Scholar
Masoud, H. & Stone, H. A. 2014 A reciprocal theorem for Marangoni propulsion. J. Fluid Mech. 741, R4.CrossRefGoogle Scholar
Masoud, H., Stone, H. A. & Shelley, M. J. 2013 On the rotation of porous ellipsoids in simple shear flows. J. Fluid Mech. 733, R6.CrossRefGoogle Scholar
Mathijssen, A. J., Pushkin, D. O. & Yeomans, J. M. 2015 Tracer trajectories and displacement due to a micro-swimmer near a surface. J. Fluid Mech. 773, 498519.CrossRefGoogle Scholar
Mathijssen, A. J. T. M., Doostmohammadi, A., Yeomans, J. M. & Shendruk, T. N. 2016a Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films. J. R. Soc. Interface 13 (115), 20150936.CrossRefGoogle Scholar
Mathijssen, A. J. T. M., Shendruk, T. N., Yeomans, J. M. & Doostmohammadi, A. 2016b Upstream swimming in microbiological flows. Phys. Rev. Lett. 116, 028104.CrossRefGoogle Scholar
Mino, G., Mallouk, T. E., Darnige, T., Hoyos, M., Dauchet, J., Dunstan, J., Soto, R., Wang, Y., Rousselet, A. & Clement, E. 2011 Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett. 106 (4), 048102.CrossRefGoogle Scholar
Molaei, M., Barry, M., Stocker, R. & Sheng, J. 2014 Failed escape: solid surfaces prevent tumbling of Escherichia coli . Phys. Rev. Lett. 113 (6), 068103.CrossRefGoogle ScholarPubMed
Or, Y. & Murray, R. M. 2009 Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E 79, 045302.Google Scholar
Ozarkar, S. S. & Sangani, A. S. 2008 A method for determining Stokes flow around particles near a wall or in a thin film bounded by a wall and a gas–liquid interface. Phys. Fluids 20 (6), 063301.CrossRefGoogle Scholar
Paxton, W. F., Kistler, K. C., Olmeda, C. C., Sen, A., St Angelo, S. K., Cao, Y., Mallouk, T. E., Lammert, P. E. & Crespi, V. H. 2004 Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126 (41), 1342413431.CrossRefGoogle ScholarPubMed
Pedley, T. J. & Kessler, J. O. 1987 The orientation of spheroidal microorganisms swimming in a flow field. Proc. R. Soc. Lond. B 231 (1262), 4770.CrossRefGoogle Scholar
Pushkin, D. O. & Yeomans, J. M. 2014 Stirring by swimmers in confined microenvironments. J. Stat. Mech. 2014 (4), P04030.Google Scholar
Quiñones, B., Dulla, G. & Lindow, S. E. 2005 Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae . Mol. Plant–Microbe Interact. 18 (7), 682693.CrossRefGoogle ScholarPubMed
Spagnolie, S. E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.CrossRefGoogle Scholar
Staben, M. E., Zinchenko, A. Z. & Davis, R. H. 2003 Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys. Fluids 15 (6), 17111733.CrossRefGoogle Scholar
Stone, H. A. & Masoud, H. 2015 Mobility of membrane-trapped particles. J. Fluid Mech. 781, 494505.CrossRefGoogle Scholar
Vaccari, L., Allan, D., Sharifi-Mood, N., Singh, A., Leheny, R. & Stebe, K. 2015 Films of bacteria at interfaces: three stages of behaviour. Soft Matt. 11, 60626074.CrossRefGoogle Scholar
Valadares, L. F., Tao, Y.-G., Zacharia, N. S., Kitaev, V., Galembeck, F., Kapral, R. & Ozin, G. A. 2010 Catalytic nanomotors: self-propelled sphere dimers. Small 6 (4), 565572.CrossRefGoogle ScholarPubMed
Wang, S. & Ardekani, A. M. 2013 Swimming of a model ciliate near an air–liquid interface. Phys. Rev. E 87, 063010.Google Scholar
Zöttl, A. & Stark, H. 2012 Nonlinear dynamics of a microswimmer in Poiseuille flow. Phys. Rev. Lett. 108 (21), 218104.CrossRefGoogle Scholar
Zöttl, A. & Stark, H. 2013 Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow. Eur. Phys. J. E 36 (1), 4.Google Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydrodynamics of micro-swimmers in films
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hydrodynamics of micro-swimmers in films
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hydrodynamics of micro-swimmers in films
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *