Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-9th95 Total loading time: 1.125 Render date: 2022-12-06T19:44:50.947Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Impulsively actuated jets from thin liquid films for high-resolution printing applications

Published online by Cambridge University Press:  29 August 2012

Matthew S. Brown*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
C. Frederik Brasz
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Yiannis Ventikos
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Craig B. Arnold
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: matthew.sc.brown@gmail.com

Abstract

Blister-actuated laser-induced forward transfer (BA-LIFT) is a versatile printing technique in which fine jets of ink are ejected from a thin donor film onto an acceptor substrate, enabling high-resolution patterns to be formed. Fluid ejections are initiated by the rapid expansion of micrometre-sized blisters that form on a polymer film underneath the ink layer. Recent work has demonstrated that these ejections exhibit novel flow phenomena due to the unique dimensions and geometry of the BA-LIFT configuration. In this work, we study the dynamics of BA-LIFT printing using a computational model in which fluid is forced by a boundary that deforms according to experimental time-resolved measurements of an expanding blister profile. This allows the model’s predictions to be unambiguously correlated with experimental blister-actuated ejections without any fitting parameters. First, we validate the model’s predictive capabilities against experimental results, including the ability to accurately reproduce the size, shape and temporal evolution of the jet as well as the total volume of ink released. The validated model is then used to interrogate the flow dynamics in order to better understand the mechanisms for fluid ejection. Finally, parametric studies are conducted to investigate the influence of ink density, surface tension, viscosity and film thickness as well as the size of the blister used. These results provide key insights into avenues for optimization and better control of the BA-LIFT process for improved resolution and repeatability of the printed features.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Antkowiak, A., Bremond, N., Le Dizes, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.CrossRefGoogle Scholar
2. Arjun, A. & Wan, K. T. 2005 Derivation of the strain energy release rate from first principles for the pressurized blister test. Intl J. Adhes. Adhes. 25 (1), 1318.CrossRefGoogle Scholar
3. Arnold, C. B., Kim, H. & Piqué, A. 2004 Laser direct write of planar alkaline microbatteries. Appl. Phys. A-Mater. Sci. Process. 79 (3), 417420.CrossRefGoogle Scholar
4. Arnold, C. B., Serra, P. & Piqué, A. 2007 Laser direct-write techniques for printing of complex materials. MRS Bull. 32 (1), 2331.CrossRefGoogle Scholar
5. Arnold, C. B., Wartena, R. C., Swider-Lyons, K. E. & Piquéa, A. 2003 Direct-write planar microultracapacitors by laser engineering. J. Electrochem. Soc. 150 (5), A571A575.CrossRefGoogle Scholar
6. Barron, J. A., Wu, P., Ladouceur, H. D. & Ringeisen, B. R. 2004 Biological laser printing: a novel technique for creating heterogeneous three-dimensional cell patterns. Biomed. Microdevices 6 (2), 139147.CrossRefGoogle Scholar
7. Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.CrossRefGoogle Scholar
8. Bohandy, J., Kim, B. F. & Adrian, F. J. 1986 Metal-deposition from a supported metal-film using an excimer laser. J. Appl. Phys. 60 (4), 15381539.CrossRefGoogle Scholar
9. Boutopoulos, C., Tsouti, V., Goustouridis, D., Chatzandroulis, S. & Zergioti, I. 2008 Liquid phase direct laser printing of polymers for chemical sensing applications. Appl. Phys. Lett. 93 (19), 191109.CrossRefGoogle Scholar
10. Brown, M. S., Kattamis, N. T. & Arnold, C. B. 2010 Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J. Appl. Phys. 107 (8), 083103.CrossRefGoogle Scholar
11. Brown, M. S., Kattamis, N. T. & Arnold, C. B. 2011 Time-resolved dynamics of laser-induced micro-jets from thin liquid films. Microfluid Nanofluid 19.Google Scholar
12. Colina, M., Duocastella, M., Fernández-Pradas, J. M., Serra, P. & Morenza, J. L. 2006 Laser-induced forward transfer of liquids: study of the droplet ejection process. J. Appl. Phys. 99 (8), 084909.CrossRefGoogle Scholar
13. Colina, M., Serra, P., Fernández-Pradas, J. M., Sevilla, L. & Morenza, J. L. 2005 DNA deposition through laser induced forward transfer. Biosens. Bioelectr. 20 (8), 16381642.CrossRefGoogle ScholarPubMed
14. Dinca, V., Farsari, M., Kafetzopoulos, D., Popescu, A., Dinescu, M. & Fotakis, C. 2008 Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers. Thin Solid Films 516 (18), 65046511.CrossRefGoogle Scholar
15. Doraiswamy, A., Narayan, R. J., Lippert, T., Urech, L., Wokaun, A., Nagel, M., Hopp, B., Dinescu, M., Modi, R., Auyeung, R. C. Y. & Chrisey, D. B. 2006 Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Appl. Surf. Sci. 252 (13), 47434747.CrossRefGoogle Scholar
16. Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.CrossRefGoogle Scholar
17. Duocastella, M., Colina, M., Fernández-Pradas, J. M., Serra, P. & Morenza, J. L. 2007 Study of the laser-induced forward transfer of liquids for laser bioprinting. Appl. Surf. Sci. 253 (19), 78557859.CrossRefGoogle Scholar
18. Duocastella, M., Fernández-Pradas, J. M., Morenza, J. L. & Serra, P. 2009 Time-resolved imaging of the laser forward transfer of liquids. J. Appl. Phys. 106 (8), 084907.CrossRefGoogle Scholar
19. Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865929.CrossRefGoogle Scholar
20. Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
21. Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
22.ESI CFD Inc. (2009) CFD-ACE+ User manual, v2009.2 edition. ESI CFD Inc., 6767 Old Madison Pike, Ste. 600, Huntsville, AL 35806, USA.Google Scholar
23. Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102 (3), 034502.CrossRefGoogle ScholarPubMed
24. Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.CrossRefGoogle Scholar
25. Hopp, B., Smausz, T., Antal, Zs, Kresz, N., Bor, Zs & Chrisey, D. 2004 Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia). J. Appl. Phys. 96 (6), 34783481.CrossRefGoogle Scholar
26. Hopp, B., Smausz, T., Kresz, N., Barna, N., Bor, Z., Kolozsvari, L., Chrisey, D. B., Szabo, A. & Nogradi, A. 2005 Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Engng 11 (11–12), 18171823.CrossRefGoogle ScholarPubMed
27. Josserand, C., Lemoyne, L., Troeger, R. & Zaleski, S. 2005 Droplet impact on a dry surface: triggering the splash with a small obstacle. J. Fluid Mech. 524, 4756.CrossRefGoogle Scholar
28. Kattamis, N. T., Brown, M. S. & Arnold, C. B. 2011 Finite element analysis of blister formation in laser-induced forward transfer. J. Mater. Res. 26 (18), 24382449.CrossRefGoogle Scholar
29. Kattamis, N. T., McDaniel, N. D., Bernhard, S. & Arnold, C. B. 2009 Laser direct write printing of sensitive and robust light emitting organic molecules. Appl. Phys. Lett. 94 (10), 103306.CrossRefGoogle Scholar
30. Kattamis, N. T., Purnick, P. E., Weiss, R. & Arnold, C. B. 2007 Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl. Phys. Lett. 91 (17), 171120.CrossRefGoogle Scholar
31. Kim, H., Auyeung, R. C. Y. & Piqué, A. 2007 Laser-printed thick-film electrodes for solid-state rechargeable Li-ion microbatteries. J. Power Sources 165 (1), 413419.CrossRefGoogle Scholar
32. Kleefsman, K. M. T., Fekken, G., Veldman, A. E. P., Iwanowski, B. & Buchner, B. 2005 A volume-of-fluid based simulation method for wave impact problems. J. Comput. Phys. 206 (1), 363393.CrossRefGoogle Scholar
33. Kothe, D. B., Rider, W. J., Mosso, S. J., Brock, J. S. & Hochstein, J. I. 1996 Volume tracking of interfaces having surface tension in two and three dimensions. AIAA Paper, 96-0859.Google Scholar
34. Kyrkis, A. A., Andreadaki, K. D., Papazoglou, D. G. & Zergioti, I. 2006 Recent Advances in Laser Processing of Materials, pp. 213241 Elsevier, chapter 7.Google Scholar
35. Lewis, B. R., Kinzel, E. C., Laurendeau, N. M., Lucht, R. P. & Xu, X. F. 2006 Planar laser imaging and modelling of matrix-assisted pulsed-laser evapouration direct write in the bubble regime. J. Appl. Phys. 100 (3), 033107.CrossRefGoogle Scholar
36. Lin, Y. F., Huang, Y. & Chrisey, D. B. 2009 Droplet formation in matrix-assisted pulsed-laser evapouration direct writing of glycerol–water solution. J. Appl. Phys. 105 (9), 093111.CrossRefGoogle Scholar
37. Piqué, A., Chrisey, D. B., Auyeung, R. C. Y., Fitz-Gerald, J., Wu, H. D., McGill, R. A., Lakeou, S., Wu, P. K., Nguyen, V. & Duignan, M. 1999 A novel laser transfer process for direct writing of electronic and sensor materials. Appl. Phys. A 69 (7), S279S284.Google Scholar
38. Piqué, A., Chrisey, D. B., Fitz-Gerald, J. M., McGill, R. A., Auyeung, R. C. Y., Wu, H. D., Lakeou, S., Nguyen, V., Chung, R. & Duignan, M. 2000 Direct writing of electronic and sensor materials using a laser transfer technique. J. Mater. Res. 15 (9), 18721875.CrossRefGoogle Scholar
39. Piqué, A., Kim, H. & Arnold, C. B. 2006 Laser Ablation and Applications, pp. 339373 Springer, chapter 14.Google Scholar
40. Plateau, J. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars.Google Scholar
41. Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
42. Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
43. Rider, W. J., Kothe, D. B., Mosso, S. J., Cerrutti, J. H. & Hochstein, J. I. 1995 Accurate solution algorithms for incompressible multiphase flows. AIAA Paper, 95-0699.Google Scholar
44. Serra, P., Colina, M., Fernández-Pradas, J. M., Sevilla, L. & Morenza, J. L. 2004 Preparation of functional DNA microarrays through laser-induced forward transfer. Appl. Phys. Lett. 85 (9), 16391641.CrossRefGoogle Scholar
45. Serra, P., Fernandez-Pradas, J. M., Colina, M., Duocastella, M., Dominguez, J. & Morenza, J. L. 2006 Laser-induced forward transfer: a direct-writing technique for biosensors preparation. J. Laser Micro/Nanoeng. 1 (3), 236242.CrossRefGoogle Scholar
46. Sikalo, S., Wilhelm, H. D., Roisman, I. V., Jakirlic, S. & Tropea, C. 2005 Dynamic contact angle of spreading droplets: experiments and simulations. Phys. Fluids 17, 062103.CrossRefGoogle Scholar
47. Teng, H., Kinoshita, C. M. & Masutani, S. M. 1995 Prediction of droplet size from the breakup of cylindrical liquid jets. Intl J. Multiphase Flow 21 (1), 129136.CrossRefGoogle Scholar
48. Tjan, K. K. & Phillips, W. R. C. 2007 On impulsively generated inviscid axisymmetric surface jets, waves and drops. J. Fluid Mech. 576, 377403.CrossRefGoogle Scholar
49. Van Doormaal, J. P. & Raithby, G. D. 1984 Enhancements of the simple method for predicting incompressible fluid flows. Numer. Heat Transfer 7 (2), 147163.CrossRefGoogle Scholar
50. van Hoeve, W., Gekle, S., Snoeijer, J. H., Versluis, M., Brenner, M. P. & Lohse, D. 2010 Breakup of diminutive Rayleigh jets. Phys. Fluids 22 (12), 122003.CrossRefGoogle Scholar
51. Wartena, R., Curtright, A. E., Arnold, C. B., Piqué, A. & Swider-Lyons, K. E. 2004 Li-ion microbatteries generated by a laser direct-write method. J. Power Sources 126 (1–2), 193202.CrossRefGoogle Scholar
52. Webster, R. 1994 An algebraic multigrid solver for Navier–Stokes problems. Intl J. Numer. Meth. Fluids 18, 761780.CrossRefGoogle Scholar
53. Wijshoff, H. 2008 Structure- and fluid-dynamics in piezo inkjet printheads. PhD thesis, University of Twente, Enschede, January.Google Scholar
54. Young, D., Auyeung, R. C. Y., Piqué, A., Chrisey, D. B. & Dlott, D. D. 2002 Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy. Appl. Surf. Sci. 197, 181187.CrossRefGoogle Scholar
55. Zeff, B. W., Kleber, B., Fineberg, J. & Lathrop, D. P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403 (6768), 401404.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Brown et al. supplementary movie

Velocity field generated by a rapidly expanding blister formed by a 5.115-μJ laser pulse. The movie shows the behavior of the flow during the first 300 ns of the blister's expansion.

Download Brown et al. supplementary movie(Image)
Image 6 MB
Supplementary material: PDF

Brown et al. supplementary material

Supplementary figure

Download Brown et al. supplementary material(PDF)
PDF 34 KB
Supplementary material: Image

Brown et al. supplementary movie

Velocity field generated by a rapidly expanding blister formed by a 5.115-μJ laser pulse. The movie shows the growth of a free-surface protrusion into a jet, which pinches off a droplet.

Download Brown et al. supplementary movie(Image)
Image 28 MB
Supplementary material: Image

Brown et al. supplementary movie

Rendering of simulation results for the ejection of fluid initiated with a 6.1-μJ laser pulse. The jet impacts with the acceptor substrate, leaving a deposited droplet on its surface.

Download Brown et al. supplementary movie(Image)
Image 11 MB
Supplementary material: Image

Brown et al. supplementary movie

Evolution of tracer particles within the film during a transfer initiated with a 5.115-μJ laser pulse.

Download Brown et al. supplementary movie(Image)
Image 5 MB
71
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Impulsively actuated jets from thin liquid films for high-resolution printing applications
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Impulsively actuated jets from thin liquid films for high-resolution printing applications
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Impulsively actuated jets from thin liquid films for high-resolution printing applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *