Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-4btjb Total loading time: 0.229 Render date: 2022-05-28T01:17:20.244Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Statistical evidence of hairpin vortex packets in wall turbulence

Published online by Cambridge University Press:  22 June 2001

K. T. CHRISTENSEN
Affiliation:
Laboratory for Turbulence and Complex Flow, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, IL 61801, USA
R. J. ADRIAN
Affiliation:
Laboratory for Turbulence and Complex Flow, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, IL 61801, USA

Abstract

The structure of velocity in the outer region of turbulent channel flow (y+ [gsim ] 100) is examined statistically to determine the average flow field associated with spanwise vortical motions. Particle image velocimetry measurements of the streamwise and wall-normal velocity components are correlated with a vortex marker (swirling strength) in the streamwise–wall-normal plane, and linear stochastic estimation is used to estimate the conditional average of the two-dimensional velocity field associated with a swirling motion. The mean structure consists of a series of swirling motions located along a line inclined at 12°–13° from the wall. The pattern is consistent with the observations of outer-layer wall turbulence in which groups of hairpin vortices occur aligned in the streamwise direction. While the observational evidence for the aforementioned model was based upon both experimental and computational visualization of instantaneous structures, the present results show that, on average, the instantaneous structures occur with sufficient frequency, strength, and order to leave an imprint on the statistics of the flow as well. Results at Reτ = 547 and 1734 are presented.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
275
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Statistical evidence of hairpin vortex packets in wall turbulence
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Statistical evidence of hairpin vortex packets in wall turbulence
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Statistical evidence of hairpin vortex packets in wall turbulence
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *