Skip to main content
×
×
Home

Buoyancy instability of homologous implosions

  • B. M. Johnson (a1)
Abstract

I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy and vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor $(2C)^{|N_{0}|t_{i}}$ , where $C$ is the convergence ratio of the implosion, $N_{0}$ is the initial buoyancy frequency and $t_{i}$ is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor $\exp ({\rm\pi}|N_{0}|t_{s})$ , where $N_{0}$ is the buoyancy frequency at stagnation and $t_{s}$ is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode $\ell \gtrsim 100$ for spherical flows). Finally, comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ${\sim}30$ zones per wavelength is required to capture these solutions accurately. This translates to an angular resolution of ${\sim}(12/\ell )^{\circ }$ , or ${\lesssim}0.1^{\circ }$ to resolve the fastest-growing modes.

Copyright
Corresponding author
Email address for correspondence: johnson359@llnl.gov
References
Hide All
Atzeni, S. & Meyer-ter-Vehn, J. 2004 The Physics of Inertial Fusion. Oxford University Press.
Basko, M. & Murakami, M. 1998 Self-similar implosions and explosions of radiatively cooling gaseous masses. Phys. Plasmas 5, 518528.
Betti, R., Goncharov, V. N., McCrory, R. L. & Verdon, C. P. 1998 Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas 5, 14461454.
Cao, Y. & Lou, Y.-Q. 2009 Perturbation analysis of a general polytropic homologously collapsing stellar core. Mon. Not. R. Astron. Soc. 400, 491495.
Cao, Y. & Lou, Y.-Q. 2010 Adiabatic perturbations in homologous conventional polytropic core collapses of a spherical star. Mon. Not. R. Astron. Soc. 403, 491495.
Cerjan, C., Springer, P. T. & Sepke, S. M. 2013 Integrated diagnostic analysis of inertial confinement fusion capsule performance. Phys. Plasmas 20, 056319.
Chimonas, G. 1970 The extension of the Miles–Howard theorem to compressible fluids. J. Fluid Mech. 43, 833836.
Chu, M.-C. 1996 Homologous contraction of a sonoluminescing bubble. Phys. Rev. Lett. 76, 46324635.
Cook, R., McQuillan, B., Takagi, M. & Stephens, R. 2000 The development of plastic mandrels for NIF targets. ICF Semiannual Report 1, 112.
Clark, D. S., Hinkel, D. E., Eder, D. C., Jones, O. S., Haan, S. W., Hammel, B. A., Marinak, M. M., Milovich, J. L., Robey, H. F., Suter, L. J. & Town, R. P. J. 2013 Detailed implosion modeling of deuterium–tritium layered experiments on the National Ignition Facility. Phys. Plasmas 20, 056318.
Gatu Johnson, M., Casey, D. T., Frenje, J. A., Li, C.-K., Sguin, F. H., Petrasso, R. D., Ashabranner, R., Bionta, R., LePape, S., McKernan, M., Mackinnon, A., Kilkenny, J. D., Knauer, J. & Sangster, T. C. 2013 Measurements of collective fuel velocities in deuterium–tritium exploding pusher and cryogenically layered deuterium–tritium implosions on the NIF. Phys. Plasmas 20, 042707.
Goldreich, P. & Weber, S. V. 1980 Homologously collapsing stellar cores. Astrophys. J. 238, 991997.
Greenspan, H. P. & Benney, D. J. 1963 On shear-layer instability, breakdown and transition. J. Fluid Mech. 15, 133153.
Janka, H.-T. 2012 Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407451.
Johnson, B. M. & Gammie, C. F. 2005 Linear theory of thin, radially stratified disks. Astrophys. J. 626, 978990.
Johnson, B. M. 2014 On the interaction between turbulence and a planar rarefaction. Astrophys. J. 784, 117.
Kidder, R. E. 1974 Theory of homogeneous isentropic compression and its application to laser fusion. Nucl. Fusion 14, 5360.
Lai, D. & Goldreich, P. 2000 Growth of perturbations in gravitational collapse and accretion. Astrophys. J. 535, 402411.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Butterworth-Heinemann.
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.
Mjolsness, R. C. & Ruppel, H. M.1978 Shear-layer instability in cylindrical implosions of rotating fluids. Tech. Rep. LA-7432-MS. Los Alamos Scientific Laboratory.
Murphy, T. J. 2014 The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra. Phys. Plasmas 21, 072701.
Rathkopf, J. A., Miller, D. S., Owen, J. M., Stuart, L. M., Zika, M. R., Eltgroth, P. G., Madsen, N. K., McCandless, K. P., Nowak, P. F., Nemanic, M. K., Gentile, N. A. & Keen, N. D.2000 KULL: LLNL’s ASCI inertial confinement fusion simulation code. Physor 2000, ANS Int. Topical Mtg. Adv. in Reactor Phys. Math. Comput. into the Next Millennium.
Sanz, J., Garnier, J., Cherfils, C., Masse, L. & Temporal, M. 2005 Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules. Phys. Plasmas 12, 112702.
Schwarzschild, K. 1992 Collected Works. Springer.
Suslick, K. S. & Flannigan, D. J. 2008 Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem. 59, 659683.
Thomas, V. A. & Kares, R. J. 2012 Drive asymmetry and the origin of turbulence in an ICF implosion. Phys. Rev. Lett. 109, 075004.
Weber, C. R., Clark, D. S., Cook, A. W., Busby, L. E. & Robey, H. F. 2014 Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation. Phys. Rev. E 89, 053106.
Whitham, G. B. 1965 A general approach to linear and non-linear dispersive waves using a Lagrangian. J. Fluid Mech. 22, 273283.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed