Skip to main content
×
Home
    • Aa
    • Aa

Closed-streamline flows past rotating single cylinders and spheres: inertia effects

  • G. G. Poe (a1) (a2) and Andreas Acrivos (a1)
Abstract

The flow around a cylinder and a sphere rotating freely in a simple shear was studied experimentally for moderate values of the shear Reynolds number Re. For a freely rotating cylinder, the data were found to be consistent with the results obtained numerically by Kossack & Acrivos (1974), at least for Reynolds numbers up to about 10. Rates of rotation of a freely suspended sphere were also obtained over the same range of Reynolds numbers and showed that, with increasing Re, the dimensionless angular velocity does not decrease as fast for a sphere as it does for a cylinder. In both cases, photographs of the streamline patterns around the objects were consistent with this behaviour. Furthermore, it was found in each case that the asymptotic solutions for Re [Lt ] 1 derived by Robertson & Acrivos (1970) for a cylinder and by Lin, Peery & Schowalter (1970) for a sphere are not valid for Reynolds numbers greater than about 0.1, and that the flow remains steady only up to values of Re of about 6.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax