Skip to main content Accessibility help

Control of oblique-type breakdown in a supersonic boundary layer employing streaks

  • Sushank Sharma (a1), Mostafa S. Shadloo (a1), Abdellah Hadjadj (a1) and Markus J. Kloker (a2)


The effectiveness of streak modes in controlling the oblique-type breakdown in a supersonic boundary-layer at Mach 2.0 is investigated using direct numerical simulations. Investigations in the literature have shown the effectiveness of streak modes in delaying the onset of transition dominated by two-dimensional waves, but in oblique breakdown, three-dimensional waves and a strong streak mode dominate the transition process. Paredes et al. (J. Fluid Mech., vol. 831, 2017, pp. 524–553) discussed the possible stabilization of supersonic boundary layers by optimally growing streaks using parabolized stability equations. However, no study has as yet been reported regarding direct nonlinear control of oblique breakdown. This study deals with the effects of large-amplitude decaying streak modes generated by a blowing–suction strip at the wall to control full breakdown in a reference case. Modes with four to five times the fundamental wavenumber are found to be beneficial for controlling the transition. In the first region after the control-mode forcing, the beneficial mean-flow distortion (MFD), generated by inducing the control mode, is solely responsible for hampering the growth of the fundamental-mode. On the whole, the MFD and the three-dimensional part of the control contribute equally towards controlling the oblique breakdown. The results show significant suppression of transition, and substantial improvements have been observed in the levels of the skin-friction coefficient and wall-temperature in comparison to the uncontrolled case. Moreover, refreshing the control using an additional downstream control strip increases the gain. However, the forcing amplitude must be carefully chosen in order not to introduce a generalized inflection point in the spanwise averaged mean flow invoking enhanced disturbance growth.


Corresponding author

Email address for correspondence:


Hide All
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.10.1017/S0022112000002421
Bagheri, S. & Hanifi, A. 2007 The stabilizing effect of streaks on Tollmien–Schlichting and oblique waves: a parametric study. Phys. Fluids 19 (7), 078103.10.1063/1.2746047
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids 14 (8), L57L60.10.1063/1.1493791
Dörr, P. C. & Kloker, M. J. 2017 Numerical investigations on Tollmien–Schlichting wave attenuation using plasma-actuator vortex generators. AIAA J. 56 (4), 13051309.10.2514/1.J056779
Fezer, A. & Kloker, M. J. 2000 Spatial direct numerical simulation of transition phenomena in supersonic flat-plate boundary layers. In Laminar-Turbulent Transition, pp. 415420. Springer.10.1007/978-3-662-03997-7_62
Fasel, H. F., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layers: oblique breakdown. In Fluids Engineering Conference, pp. 7792. ASME.
Kosinov, A. D., Semionov, N. V., Shevelkov, S. G. & Zinin, O. I. 1994 Experiments on the nonlinear instability of supersonic boundary layers. In Nonlinear Instability of Nonparallel Flows, pp. 196205. Springer.10.1007/978-3-642-85084-4_17
Laible, A. C. & Fasel, H. F. 2016 Continuously forced transient growth in oblique breakdown for supersonic boundary layers. J. Fluid Mech. 804, 323350.10.1017/jfm.2016.445
Mack, L. M.1984 Boundary-layer linear stability theory. Tech. Rep. California Institute of Technology Pasadena Jet Propulsion Lab.
Mayer, C. S. J., Wernz, S. & Fasel, H. F. 2011 Numerical investigation of the nonlinear transition regime in a Mach 2 boundary layer. J. Fluid Mech. 668, 113149.10.1017/S0022112010004556
Paredes, P., Choudhari, M. M. & Li, F. 2017 Instability wave–streak interactions in a supersonic boundary layer. J. Fluid Mech. 831, 524553.10.1017/jfm.2017.630
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at m = 2. 25. Phys. Fluids 16 (3), 530545.10.1063/1.1637604
Saric, W. S., Reed, H. L. & White, E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35 (1), 413440.10.1146/annurev.fluid.35.101101.161045
Shadloo, M. S., Hadjadj, A. & Hussain, F. 2015 Statistical behavior of supersonic turbulent boundary layers with heat transfer at m = 2. Intl J. Heat Fluid Flow 53, 113134.10.1016/j.ijheatfluidflow.2015.02.004
Shahinfar, S., Sattarzadeh, S. S., Fransson, J. H. M. & Talamelli, A. 2012 Revival of classical vortex generators now for transition delay. Phys. Rev. Lett. 109 (7), 074501.10.1103/PhysRevLett.109.074501
Sharma, S., Shadloo, M. S. & Hadjadj, A. 2018a Effect of thermo-mechanical non-equilibrium on the onset of transition in supersonic boundary layers. Heat Mass Transfer doi:10.1007/s00231-018-2429-9.
Sharma, S., Shadloo, M. S. & Hadjadj, A. 2018b Laminar-to-turbulent transition in supersonic boundary layer: effects of initial perturbation and wall heat transfer. Numer. Heat Transfer A 73 (9), 583603.10.1080/10407782.2018.1464785
Thumm, A.1991 Numerische Untersuchungen zum laminar-turbulenten Strömungsumschlag in transsonischen Grenzschitströmungen. Dissertation, University of Stuttgart.
Wassermann, P. & Kloker, M. J. 2002 Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J. Fluid Mech. 456, 4984.10.1017/S0022112001007418
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed