Abe, H., Matsuo, Y. & Kawamura, H.
2005
A DNS study of Reynolds-number dependence on pressure fluctuations in a turbulent channel flow. In TSFP Digital Library Online. Begel House Inc.

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D.
2000
Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.
422, 1–54.

Antonia, R. A. & Luxton, R. E.
1971
The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough. J. Fluid Mech.
48, 721–761.

Atkinson, C., Coudert, S., Foucaut, J.-M., Stanislas, M. & Soria, J.
2011
The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Exp. Fluids
50, 1031–1056.

Atkinson, C. & Soria, J.
2009
An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids
47, 553–568.

Baur, T. & Köngeter, J.
1999
PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulent phenomena. In Proceedings of the 3rd International Workshop on Particle Image Velocimetry, Santa Barbara, USA.

Benjamin, T. B.
1960
Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mech.
9, 513–532.

Benjamin, T. B.
1963
The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows. J. Fluid Mech.
16, 436–450.

Bernardini, M., Pirozzoli, S. & Orlandi, P.
2014
Velocity statistics in turbulent channel flow up to *Re*
_{𝜏} = 4000. J. Fluid Mech.
742, 171–191.

Blake, W. K.
1970
Turbulent boundary layer wall pressure fluctuations on smooth and rough walls. J. Fluid Mech.
44, 637–660.

Blick, E. F. & Walters, R. R.
1968
Turbulent boundary-layer characteristics of compliant surfaces. J. Aircraft
5 (1), 11–16.

Bone, D. J., Bachor, H. A. & Sandeman, R. J.
1986
Fringe-pattern analysis using a 2-D Fourier transform. Appl. Opt.
25 (10), 1653–1660.

Bull, M. K.
1967
Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech.
28 (4), 719–754.

Bushnell, D. M., Hefner, J. N. & Ash, R. L.
1977
Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids
20, S31–S48.

Carpenter, P. W. & Garrad, A. D.
1985
The hydrodynamic stability of flows over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech.
155, 465–510.

Carpenter, P. W. & Garrad, A. D.
1986
The hydrodynamic stability of flows over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech.
170, 199–232.

Castellini, P., Martarelli, M. & Tomasini, E. P.
2006
Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs. Mech. Syst. Signal Process.
20, 1265–1285.

Chang, P. A., Piomelli, U. & Blake, W. K.
1999
Relationship between wall pressure and velocity field sources. Phys. Fluids
11, 3434–3448.

Charonko, J. J., King, C. V., Smith, B. L. & Vlachos, P. P.
2010
Assessment of pressure field calculations from particle image velocimetry measurements. Meas. Sci. Technol.
21, 105401.

Chase, D. M.
1991
Generation of fluctuating normal stress in a viscoelastic layer by surface shear stress and pressure as in turbulent boundary-layer flow. J. Acoust. Soc. Am.
89 (6), 2589–2596.

Choi, H. & Moin, P.
1990
On the spacetime characteristics of wall-pressure fluctuations. Phys. Fluids
2 (8), 1450–1460.

Choi, K.-S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N. & Kulik, V. M.
1997
Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A
453, 2229–2240.

Conte, N. & Jardret, V.
2002
Frequency specific characterization of very soft polymeric materials using nanoindentation testing. Mat. Res. Soc. Symp. Proc.
710, DD7.10.1-6.

Dean, R. B.
1978
Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans. ASME: J. Fluids Engng
100, 215–223.

Dinkelacker, A., Hessel, M., Meier, G. E. A. & Schewe, G.
1977
Investigation of pressure fluctuations beneath a turbulent boundary layer by means of an optical method. Phys. Fluids
20 (10), S216–S224.

Du, P., Cheng, C., Lu, H. & Zhang, X.
2013
Investigation of cellular contraction forces in the frequency domain using a PDMS micropillar-based force transducer. J. Microelectromech. Syst.
22 (1), 44–53.

Duncan, J. H.
1986
The response of an incompressible viscoelastic coating to pressure fluctuations in a turbulent boundary layer. J. Fluid Mech.
171, 339–363.

Duncan, J. H., Waxman, A. M. & Tulin, M. P.
1985
The dynamics of waves at the interface between a viscoelastic coating and a fluid flow. J. Fluid Mech.
158, 177.

Elsinga, G. E., Scarano, F., Wieneke, B. & van Oudheusden, B. W.
2006
Tomographic particle image velocimetry. Exp. Fluids
41, 933–947.

Endo, T. & Himeno, R.
2002
Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul.
3, 1–10.

Ferry, J. D.
1970
Viscoelastic Properties of Polymers. Wiley.

Fisher, D. H. & Blick, E. F.
1966
Turbulent damping by flabby skins. J. Aircraft
3 (2), 163–164.

Fitzgerald, E. R. & Fitzgerald, J. W.
1998
Blubber and compliant coatings for drag reduction in fluids: V. Driving point shear impedance measurements on compliant surfaces. In Proceedings of International Symp. on Seawater Drag Reduction 22–23 July, Newport, RI, USA (ed. Meng, J. C. S.), pp. 215–218.

Foucaut, J. M., Carlier, J. & Stanislas, M.
2004
PIV optimization for the study of turbulent flow using spectral analysis. Meas. Sci. Technol.
15, 1046–1058.

Fung, Y. C.
1965
Foundations of Solid Mechanics. Prentice Hall.

Gad-el-Hak, M.
1986
The response of elastic and viscoelastic surfaces to a turbulent boundary layer. Trans. ASME J. Appl. Mech.
53, 206–212.

Gad-el-Hak, M.
1998
Compliant coatings: the simpler alternative. Exp. Therm. Fluid Sci.
16, 141–156.

Gad-el-Hak, M.
2002
Compliant coatings for drag reduction. Prog. Aerosp. Sci.
38, 77–99.

Gad-el-Hak, M., Blackwelder, R. F. & Riley, J. J.
1984
On the interaction of compliant coatings with boundary layer flows. J. Fluid Mech.
140, 257–280.

Ganapathisubramani, B., Hutchins, N., Monty, J. P., Chung, D. & Marusic, I.
2012
Amplitude and frequency modulation in wall turbulence. J. Fluid Mech.
712, 61–91.

Ghaemi, S., Ragni, D. & Scarano, F.
2012
PIV-based pressure fluctuations in the turbulent boundary layer. Exp. Fluids
53 (6), 1823–1840.

Ghaemi, S. & Scarano, F.
2013
Turbulent structure of high-amplitude pressure peaks within the turbulent boundary layer. J. Fluid Mech.
735, 381–426.

Ghiglia, D. C., Mastin, G. A. & Romero, L. A.
1987
Cellular-automata method for phase unwrapping. J. Opt. Soc. Am. A
4 (1), 267–280.

Ghiglia, D. C. & Pritt, M. D.
1998
Two-Dimensional Phase Unwrapping. Wiley.

Goldstein, R. M., Zebker, H. A. & Werner, C. L.
1988
Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci.
23 (4), 713–720.

Graham, J., Kanov, K., Yang, X. I. A., Lee, M. K., Malaya, N., Lalescu, C. C., Burns, R., Eyink, G., Szalay, A., Moser, R. D. & Meneveau, C.
2016
A web services-accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J. Turbul.
17 (2), 181–215.

Gurka, R., Liberzon, A., Hefetz, D., Rubinstein, D. & Shavit, U.
1999
Computation of pressure distribution using PIV velocity data. In Proceedings of the 3rd International Workshop on Particle Image Velocimetry, Santa Barbara, USA.

Hansen, R. J. & Hunston, D. L.
1974
An experimental study of turbulent flows over compliant surfaces. J. Sound Vib.
34, 297–308.

Hansen, R. J. & Hunston, D. L.
1983
Fluid-property effects on flow-generated waves on a compliant surface. J. Fluid Mech.
133, 161–177.

Hansen, R. J., Hunston, D. L., Ni, C. C. & Reischman, M. M.
1980
An experimental study of flow-generated waves on a flexible surface. J. Sound Vib.
68, 317–334.

Harris, G. L. & Lissaman, P. B. S.
1969
Turbulent skin friction on compliant surfaces. AIAA J.
7 (8), 1625–1627.

Hecht, E.
2002
Optics, 4th edn. Addison-Wesley.

Hess, D. E., Peattie, R. A. & Schwarz, W. H.
1993
A noninvasive method for the measurement of flow-induced surface displacement of a compliant surface. Exp. Fluids
14, 78–84.

Hong, J., Katz, J., Meneveau, C. & Schultz, M. P.
2012
Coherent structures and associated subgrid-scale energy transfer in a rough-wall turbulent channel flow. J. Fluid Mech.
712, 92–128.

Hong, J., Katz, J. & Schultz, M. P.
2011
Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech.
667, 1–37.

Hoyas, S. & Jiménez, J.
2006
Scaling of the velocity fluctuations in turbulent channels up to *Re*
_{𝜏} = 2003. Phys. Fluids
18 (1), 011702.

Hultmark, M.
2012
A theory for the streamwise turbulent fluctuations in high Reynolds number pipe flow. J. Fluid Mech.
707, 575–584.

Hultmark, M., Bailey, S. C. C. & Smits, A. J.
2010
Scaling of near-wall turbulence in pipe flow. J. Fluid Mech.
649, 103–113.

Hutchins, N. & Marusic, I.
2007a
Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond.
365, 647–664.

Hutchins, N. & Marusic, I.
2007b
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1–28.

Ichioka, Y. & Inuiya, M.
1972
Direct phase detecting system. Appl. Opt.
11 (7), 1507–1514.

Itoh, K.
1982
Analysis of the phase unwrapping algorithm. Appl. Opt.
21 (14), 2470.

Jeon, S., Choi, H., Yoo, J. Y. & Moin, P.
1999
Space-time characteristics of the wall shear-stress fluctuations in a low-Reynolds-number channel flow. Phys. Fluids
11 (10), 3084–3094.

Jeong, J. & Hussain, F.
1995
On the identification of a vortex. J. Fluid Mech.
285, 69–94.

Joshi, P., Liu, X. & Katz, J.
2014
Effect of mean and fluctuating pressure gradients on boundary layer turbulence. J. Fluid Mech.
748, 36–84.

de Kat, R. & van Oudheusden, B. W.
2010
Instantaneous planar pressure from PIV: analytic and experimental test-cases. In 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 5–8.

de Kat, R. & van Oudheusden, B. W.
2012
Instantaneous planar pressure determination from PIV in turbulent flow. Exp. Fluids
52, 1089–1106.

Kim, J.
1983
On the structure of wall bounded turbulent flows. Phys. Fluids
26, 2088–2097.

Kim, J.
1989
On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech.
205, 421–451.

Kim, E. & Choi, H.
2014
Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech.
756, 30–53.

Ko, S. H. & Schloemer, H. H.
1989
Calculations of turbulent boundary-layer pressure fluctuations transmitted into a viscoelastic layer. J. Acoust. Soc. Am.
85, 1469–1477.

Kobashi, Y. & Ichijo, M.
1986
Wall pressure and its relation to turbulent structure of a boundary layer. Exp. Fluids
4, 49–55.

Koschatzky, V., Moore, P. D., Westerweel, J., Scarano, F. & Boersma, B. J.
2011
High speed PIV applied to aerodynamic noise investigation. Exp. Fluids
50, 863–876.

Kramer, M. O.
1957
Boundary-layer stabilization by distributed damping. J. Aero. Sci.
24, 459–460.

Kramer, M. O.
1962
Boundary-layer stabilization by distributed damping. Naval Engrs J.
74 (2), 341–348.

Kulik, V. M., Semenov, B. N., Boiko, A. V., Seoudi, B. M., Chun, H. H. & Lee, I.
2009
Measurement of dynamic properties of viscoelastic materials. Exp. Mech.
49, 417–425.

Landahl, M. T.
1962
On the stability of a laminar incompressible boundary layer over a flexible surface. J. Fluid Mech.
13, 609–632.

Landau, L. D. & Lifshitz, E. M.
1970
Theory of Elasticity, 2nd edn. Pergamon.

Lee, M. & Moser, R. D.
2015
Direct numerical simulation of turbulent channel flow up to *Re*
_{𝜏} ≈ 5200. J. Fluid Mech.
774, 395–415.

Lee, T., Fisher, M. & Schwarz, W. H.
1993a
Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech.
257, 373–401.

Lee, T., Fisher, M. & Schwarz, W. H.
1993b
The measurement of flow-induced surface displacement on a compliant surface by optical holographic interferometry. Exp. Fluids
14, 159–168.

Lee, T., Fisher, M. & Schwarz, W. H.
1995
Investigation of the effects of a compliant surface on boundary-layer stability. J. Fluid Mech.
288, 37–58.

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. L.
2008
A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul.
9, N31.

Liu, X. & Katz, J.
2006
Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp. Fluids
41, 227–240.

Liu, X. & Katz, J.
2008
Cavitation phenomena occurring due to interaction of shear layer vortices with the trailing corner of a two-dimensional open cavity. Phys. Fluids
20, 041702.

Liu, X. & Katz, J.
2013
Vortex–corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field. J. Fluid Mech.
728, 417–457.

Liu, X., Moreto, J. R. & Siddle-Mitchell, S.2016 Instantaneous pressure reconstruction from measured pressure gradient using rotating parallel ray method. In *54th AIAA Aerospace Sciences Meeting*. AIAA SciTech. *AIAA* 2016-1049.

Liu, Z., Adrian, R. J. & Hanratiy, T. J.
2001
Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech.
448, 53–80.

Lozano-durán, A. & Jiménez, J.
2014
Effect of the computational domain on direct simulations of turbulent channels up to *Re*
_{𝜏} = 4200. Phys. Fluids
26 (1), 011702.

Luhar, M., Sharma, A. S. & McKeon, B. J.
2015
A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech.
768, 415–441.

Mark, J. E.(Ed.) 1999
Polymer Data Handbook. Oxford University Press.

Marusic, I., Mathis, R. & Hutchins, N.
2010
High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow
31, 418–428.

Mathis, R., Hutchins, N. & Marusic, I.
2009
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.
628, 311–337.

Mathis, R., Hutchins, N. & Marusic, I.
2011
A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech.
681, 537–566.

McKeon, B. J. & Sharma, A. S.
2010
A critical-layer framework for turbulent pipe flow. J. Fluid Mech.
658, 336–382.

McMichael, J. M., Klebanoff, P. S. & Mease, N. E.
1980
Experimental investigation of drag on a compliant surface. In Viscous Flow Drag Reduction (ed. Hough, G. R.), vol. 72, pp. 410–438. AIAA.

Meinhart, C. D., Wereley, S. T. & Santiago, J. G.
2000
A PIV algorithm for estimating time-averaged velocity fields. Trans. ASME J. Fluids Engng
122, 285–289.

Moffat, R. J.
1988
Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci.
1, 3–17.

Monty, J. P.2005 Developments in smooth wall turbulent duct flows. PhD thesis, the University of Melbourne.

Naka, Y., Stanislas, M., Foucaut, J., Coudert, S., Laval, J. & Obi, S.
2015
Space-time pressure-velocity correlations in a turbulent boundary layer. J. Fluid Mech.
771, 624–675.

van Oudheusden, B. W.
2013
PIV-based pressure measurement. Meas. Sci. Technol.
24, 032001.

van Oudheusden, B. W., Scarano, F., Roosenboom, E. W. M., Casimiri, E. W. F. & Souverein, L. J.
2007
Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp. Fluids
43, 153–162.

Perlman, E., Burns, R., Li, Y. & Meneveau, C.2007 *Data Exploration of Turbulence Simulations using a Database Cluster*. Supercomputing SC07, ACM, IEEE.

Perry, A. E. & Chong, M. S.
1982
On the mechanism of wall turbulence. J. Fluid Mech.
119, 173–217.

Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.

Riley, J. J., Gad-el-Hak, M. & Metcalfe, R. W.
1988
Compliant coatings. Annu. Rev. Fluid Mech.
20, 393–420.

Roddier, C. & Roddier, F.
1987
Interferogram analysis using Fourier transform techniques. Appl. Opt.
26 (9), 1668–1673.

Rubino, E. & Loppolo, T.
2016
Young’s modulus and loss tangent measurement of polydimethylsiloxane using an optical lever. J. Polym. Sci. B
54, 747–751.

Salze, E., Bailly, C., Marsden, O. & Juve, D.
2015
Investigation of the wall pressure wavenumber-frequency spectrum beneath a turbulent boundary layer with pressure gradient. In International Symposium on Turbulence and Shear Flow Phenomena, Melbourne, Australia.

Scarano, F.
2013
Tomographic PIV: principles and practice. Meas. Sci. Technol.
24, 012001.

Scharnowski, S., Hain, R. & Kahler, C. J.
2012
Reynolds stress estimation up to single-pixel resolution using PIV-measurements. Exp. Fluids
52, 985–1002.

Schäfer, L., Dierksheide, U., Klaas, M. & Schröder, W.
2011
Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry. Phys. Fluids
23, 035106.

Schrijer, F. F. J. & Scarano, F.
2008
Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation. Exp. Fluids
45, 927–941.

Schröder, A., Geisler, R., Elsinga, G. E., Scarano, F. & Dierksheide, U.
2008
Investigation of a turbulent spot and tripped turbulent boundary layer flow using time-resolved tomographic PIV. Exp. Fluids
44, 305–316.

Schröder, A., Geisler, R., Staack, K., Elsinga, G. E., Scarano, F., Wieneke, B., Henning, A., Poelma, C. & Westerweel, J.
2011
Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exp. Fluids
50, 1071–1091.

Schultz, M. P. & Flack, K. A.
2013
Reynolds-number scaling of turbulent channel flow. Phys. Fluids
25, 025104.

Sillero, J. A., Jiménez, J. & Moser, R. D.
2014
Two-point statistics for turbulent boundary layers and channels at Reynolds number up to 𝛿^{+} ≈ 2000. Phys. Fluids
26, 105109.

Soria, J. & Willert, C.
2012
On measuring the joint probability density function of three-dimensional velocity components in turbulent flows. Meas. Sci. Technol.
23, 065301.

Tabatabai, H., Oliver, D. E., Rohrbaugh, J. W. & Papadopoulos, C.
2013
Novel applications of laser Doppler vibration measurements to medical imaging. Sens. Imag.
14, 13–28.

Takeda, M., Ina, H. & Kobayashi, S.
1982
Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am.
72 (1), 156–160.

Talapatra, S. & Katz, J.
2012
Coherent structures in the inner part of a rough wall channel flow resolved using Holographic PIV. J. Fluid Mech.
711, 161–170.

Talapatra, S. & Katz, J.
2013
Three-dimensional velocity measurements in a roughness sublayer using microscopic digital inline holography and optical index matching. Meas. Sci. Technol.
24, 024004.

Townsend, A. A.
1976
The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.

Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V.
2007
Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech.
585, 1–40.

Tsuji, Y., Imayama, S., Schlatter, P., Alfredsson, P. H., Johansson, A. V., Marusic, I., Hutchins, N. & Monty, J.
2012
Pressure fluctuation in high-Reynolds-number turbulent boundary layer: results from experiments and DNS. J. Turbul.
13 (N50), 1–19.

Wang, Z., Yeo, K. S. & Khoo, B. C.
2006
On two-dimensional linear waves in Blasius boundary layer over viscoelastic layers. Eur. J. Mech. (B/Fluids)
25, 33–58.

Westerweel, J., Geelhoed, P. F. & Lindken, R.
2004
Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids
37, 375–384.

Wieneke, B.
2008
Volume self-calibration for 3D particle image velocimetry. Exp. Fluids
45, 549–556.

Willmarth, W. W. & Wooldridge, C. E.
1962
Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer. J. Fluid Mech.
14 (2), 187–210.

Wills, J. A. B.
1970
Measurements of the wavenumber/phase velocity spectrum of wall pressure beneath a turbulent boundary layer. J. Fluid Mech.
45 (1), 65–90.

Worth, N. A., Nickels, T. B. & Swaminathan, N.
2010
A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data. Exp. Fluids.
49, 637–656.

Wu, Y. & Christensen, K. T.
2010
Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech.
655, 380–418.

Xu, S., Rempfer, D. & Lumley, J.
2003
Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech.
478, 11–34.

Zhang, C., Miorini, R. & Katz, J.
2015
Integrating Mach–Zehnder interferometry with TPIV to measure the time-resolved deformation of a compliant wall along with the 3D velocity field in a turbulent channel flow. Exp. Fluids.
56, 203.