Skip to main content
    • Aa
    • Aa

A soliton on a vortex filament

  • Hidenori Hasimoto (a1)

The intrinsic equation governing the curvature K and the torsion τ of an isolated very thin vortex filament without stretching in an incompressible inviscid fluid is reduced to a non-linear Schrödinger equation \[ \frac{{\rm l}}{i}\frac{\partial \psi}{\partial t} = \frac{\partial^2\psi}{\partial s^2}+{\textstyle\frac{1}{2}}(|\psi|^2+A)\psi, \] where t is the time, s the length measured along the filament, ψ is the complex variable \[ \psi = \kappa\exp\left(i\int_0^{s}\tau \,ds\right) \] and is a function oft. It is found that this equation yields a solution describing the propagation of a loop or a hump of helical motion along a line vortex, with a constant velocity 2τ. The relation to the system of intrinsic equations derived by Betchov (1965) is discussed.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *